Heat flow redistribution in wall structure during diurnal cycle in summer
https://doi.org/10.31675/1607-1859-2021-23-2-96-104
Abstract
About the Authors
A. N. BelousUkraine
Aleksei N. Belous, PhD, A/Professor
Makiivka, Derzhavin Str., 2
O. E. Belous
Ukraine
Ol'ga E. Belous, Assistant Lecturer
Makiivka, Derzhavin Str., 2
S. V. Krakhin
Ukraine
Stanislav V. Krakhin, Senior Lecturer
Makiivka, Derzhavin Str., 2
References
1. Samarin O.D., Shevchenkova I.S. Otsenka teplotekhnicheskoi neodnorodnosti naruzhnoi steny pri izmenenii tolshchiny uteplitelya [Assessment of thermal heterogeneity of outer wall in changing the insulation thickness]. Zhurnal S.O.K. 2016. No. 3. Pp. 42–43. (rus)
2. Samarin O.D., Makeshin D.A. Obosnovanie teplozashchity neodnorodnykh ograzhdenii [Thermal protection of heterogeneous envelopes]. Zhurnal S.O.K. 2015. No. 4. Pp. 52–54. (rus)
3. Golubev. S.S. Opredelenie privedennogo soprotivleniya teploperedache ograzhdayushchikh konstruktsii na osnove chislennogo rascheta raspredeleniya temperaturnykh polei [Numerical calculation of temperature field distribution for heat transfer resistance of building envelopes]. Nauchno-tekhnicheskii vestnik Povolzh'ya. 2011. No. 5. Pp. 93–97. (rus)
4. Makarov R.A., Mureev P.N., Makarov A.N. Opredelenie popravki k termicheskomu soprotivleniyu pri kvazistatsionarnom rezhime teploperedachi v naruzhnykh stenakh, vypolnennykh iz kirpicha [Thermal resistance correction for quasi-stationary heat transfer in external brick walls]. Sovremennye problemy nauki i obrazovaniya. 2015. No. 1–1. P. 1992. (rus)
5. Makarov A.N., Mureev P.N., Makarov R.A. Reshenie zadachi regulirovaniya temperatury vnutrennei poverkhnosti naruzhnykh sten rekonstruiruemykh zdanii postroiki 60–80-kh godov XX veka [Regulation of internal temperature of exterior walls of renovated buildings built in the 1960s and 1980s]. Fundamental'nye issledovaniya. 2016. No. 6-1. Pp. 83–87. (rus)
6. Mikov A.V., Balushkin A.L. Vliyanie teploprovodnykh vklyuchenii na raschet privedennogo soprotivleniya teploperedache fasada zhilogo zdaniya s ispol'zovaniem raschetov temperaturnykh polei [Influence of thermal inclusions on temperature field calculations of residential building façade]. In: Nauchno-tekhnicheskii progress kak mekhanizm razvitiya sovremennogo obshchestva: sbornik statei Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Proc. Int. Sci. Conf. ‘Scientific and Technological Progress as a Mechanism for Development of Modern Society’). Ufa, 2020. Pp. 38–45. (rus)
7. Belous A.N., Kotov G.A., Sapronov D.A. Novikov B.A. Opredelenie soprotivleniya teploperedache pri nestatsionarnom teplovom rezhime [Heat transfer resistance in non-stationary thermal conditions]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2020. V. 22. No. 6. Pp. 83–93. (rus)
8. Gagarin V.G., Neklyudov A.Yu. Uchet teplotekhnicheskikh neodnorodnostei ograzhdenii pri opredelenii teplovoi nagruzki na sistemu otopleniya zdaniya [Thermal inhomogeneities of building envelope in determining heat load on the building heating system]. Zhilishchnoe stroitel'stvo. 2014. No. 6. Pp. 3–7. (rus)
9. Gagarin V.G., Plyushchenko N.Yu. Opredelenie termicheskogo soprotivleniya ventiliruemoi prosloiki NFS [Thermal resistance analysis of ventilated cavity]. Stroitel'stvo: nauka i obrazovanie. 2015. No. 1. P. 1. (rus)
10. Gorshkov A.S. Predlozheniya po sovershenstvovaniyu normativnykh trebovanii k ograzhdayushchim konstruktsiyam [Improvement of regulatory requirements for building envelopes]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka. 2017. No. 1–2. Pp. 49–52. (rus)
11. Mikheev D.A. Sravnitel'nyi analiz otmenennogo i predlozhennogo metodov rascheta privedennogo soprotivleniya teploperedache ograzhdayushchikh konstruktsii [Comparative analysis of abolished and proposed methods for calculating heat transfer resistance of building envelopes]. Nauchnyi zhurnal stroitel'stva i arkhitektury. 2017. No. 3 (47). Pp. 11–20. (rus)
12. Tusnina O.A. Teplotekhnicheskii raschet konstruktsii chislennymi metodami [Thermal analysis of structures using numerical methods]. Vestnik MGSU. 2013. No. 11. Pp. 91–99. (rus)
13. Bogoslovskii V.N. Stroitel'naya teplofizika (teplofizicheskie osnovy otopleniya, ventilyatsii i konditsionirovaniya vozdukha [Building thermophysics (thermal physics of heating, ventilation and air conditioning)]. Moscow: Vysshaya shkola, 1982. 415 p. (rus)
14. Koshlatyi O.B. Zavisimost' teploustoichivosti naruzhnykh sten ot ikh konstruktivnogo resheniya [Dependence of thermal resistance of exterior walls on their design]. In: Novye idei novogo veka: materialy mezhdunarodnoi nauchnoi konferentsii (Proc. Int. Sci. Conf. ‘New Ideas of New Century’). 2013. V. 2. Pp. 357–360. (rus)
15. Malyavina E.G., Usmanov Sh.Z. Ogranichenie amplitudy kolebanii temperatury pomeshcheniya v teplyi period goda [Limiting the amplitude of room temperature fluctuations during summer period]. Vestnik grazhdanskikh inzhenerov. 2017. No. 2 (61). Pp. 188–194. (rus)
16. Gorshkov A.S., Rymkevich P.P. Diagrammnyi metod opisaniya protsessa nestatsionarnoi teploperedachi [Diagrammatic method for describing an unsteady heat transfer process]. Inzhenerno-stroitel'nyi zhurnal. 2015. No. 8 (60). Pp. 68–82. (rus)
17. Panferov V.I., Panferov S.F. Primenenie metoda chastotnykh peredatochnykh funktsii dlya resheniya odnoi zadachi teploustoichivosti ograzhdeniya [Method of frequency transfer functions to solve a single heat resistance problem of building envelope]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2015. V. 15. No. 1. Pp. 48–51. (rus)
18. Kutuev M.D., Manapbaev I.K. Ispol'zovanie metoda interpolirovaniya dlya rascheta teploustoichivosti ograzhdayushchikh konstruktsii v usloviyakh Kyrgystana [Interpolation method for thermal resistance analysis of building envelopes in Kyrgyzstan]. Vestnik KRSU. 2017. V. 17. No. 5. Pp. 157–159. (rus)
19. Deconinck A., Roels S. The as-built thermal quality of building components: characterising non-stationary phenomena through inverse modelling. Energy Procedia. 2017. V. 132. Pp. 351–356.
20. Rulik S., Wróblewski W., Majkut M., Strozik M., Rusin K. Experimental and numerical analysis of heat transfer within cavity working under highly non-stationary flow conditions. Energy. 2020. V. 190. 116303.
21. Stolarska A., Strzałkowski J. Modelling of edge insulation depending on boundary conditions for the ground level. IOP Conference: Series Materials Science and Engineering. 2017. V. 245 No. 4. 042003.
Review
For citations:
Belous A.N., Belous O.E., Krakhin S.V. Heat flow redistribution in wall structure during diurnal cycle in summer. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(2):96-104. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-2-96-104