Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

STRENGTH ESTIMATION OF CONCRETE PRODUCTS

Abstract

The paper presents a series of experiments on estimating concrete product parameters by its compressive strength location and dispersion. New concepts are introduced in this paper, namely: information -redundant and -additional strength parameters the practical applications of which are described herein. It is shown that main portion of test objects has a selective strength distribution with the flat top and explicit asymmetry. Experiments prove the possibility of representing selective distributions of the compressive strength in concrete by the weighted sum of two normal distributions.

About the Authors

SERGEY P. Osipov
Tomsk Polytechnic University
Russian Federation


OLEG S. Osipov
Tomsk Polytechnic University
Russian Federation


ALIBEK A. Zhantybaev
Tomsk Polytechnic University
Russian Federation


IVAN I. Podshivalov
Tomsk State University of Architecture and Building
Russian Federation


INGA A. Prishepa
Tomsk State University of Architecture and Building
Russian Federation


NATAL'YA V. Berzhenaru
Tomsk State University of Architecture and Building
Russian Federation


References

1. Lin H., Xiong W. Review on the surface hardness of soft rock. Electronic Journal of Geotechnical Engineering, 2014. V. 19. Pp. 4269–4279.

2. Fursa T.V. Nerazrushajushhij jelektromagnitnyj metod opredelenija mehaniche-skoj prochnosti izdelij iz kompozicionnyh dijelektricheskih materialov [Non-destructive electromagnetic testing of mechanical strength of dielectric composite materials]. Physical Mesomechanics, 2004. V. 7. No. 2. Pp. 307–310. (rus)

3. Akkaya Y., Voigt T., Subramaniam K.V., Shah S.P. Nondestructive measurement of concrete strength gain by an ultrasonic wave reflection method. Materials and Structures, 2003. V. 36. No. 8. Pp. 507–514.

4. Snezhkov D.Ju., Leonovich S.N., Kim L.V. Monitoring zhelezobetonnyh kon-strukcij na osnove nerazrushajushhih ispytanij betona: metody kontrolja, kriterii sootvetstvija [Monitoring of reinforced concrete structures based on non-destructive testing of concrete: control procedures, conformity criteria]. FEFU: School of Engineering Bulletin, 2015. No. 1. Pp. 80–88. (rus)

5. Maculevich O.V., Rudnickij V.A. Opredelenie prochnosti betonov metodom dinamicheskogo indentirovanija [Determination of concrete strength by dynamic indentation method]. Nerazrushajushhij kontrol' i diagnostika, 2013. No. 2. Pp. 52–60. (rus)

6. Ulybin A.V., Zubkov S.V. O metodah kontrolja prochnosti keramicheskogo kir-picha pri obsledovanii zdanij i sooruzhenij [Methods of control for ceramic strength in building inspection]. Magazine of Civil Engineering, 2012. No. 3. Pp. 29–34. (rus)

7. Fairbairn E.M.R., Ebecken N.F.F., Paz C.N.M., Ulm F.J. Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks. Computers & Structures, 2000. V. 78. No. 1. Pp. 497–503.

8. Lu C., Danzer R., Fischer F.D. Fracture statistics of brittle materials: Weibull or normal distribution. Physical Review E, 2002. V. 65. No. 6. 067102 (4 p.).

9. Syroka-Korol E., Tejchman J., Mróz Z. FE calculations of a deterministic and statistical size effect in concrete under bending within stochastic elasto-plasticity and non-local softening. Engineering Structures, 2013. V. 48. Pp. 205–219.

10. Iervolino I., Galasso C. Comparative assessment of load–resistance factor design of FRPreinforced cross sections. Construction and Building Materials, 2012. V. 34. Pp. 151–161.

11. Lebedev A.A., Makoveckij I.V., Muzyka N.R., Volchek N.L., Shvec V.P. Ocenka povrezhdennosti materiala po rassejaniju harakteristik uprugosti i staticheskoj prochnosti [Assessment of damage level in materials by elasticity characteristic scattering and static strength]. Strength of Materials, 2006. No. 2. Pp. 5–14. (rus)

12. Sosnovskij L.A., Mahutov N.A., Kebikov A.A. Rassejanie mehanicheskih svojstv rel'sovoj stali [Scattering of mechanical properties of rail steel]. Industrial Laboratory, 2007. No. 11. Pp. 59–62. (rus)

13. Kuz'bozhev A.S., Aginej R.V., Smirnov O.V. Issledovanie variacii tverdosti trubnoj stali 17G1S v hode staticheskogo nagruzhenija [Study of variations in hardness of I7G1S steel tube under static loading]. Industrial Laboratory, 2007. No. 12. Pp. 49–53. (rus)

14. Osipov S.P., Osipov O.S., Podshivalov I.I., Berzhenaru N.V., Zhantybaev A.A. Ocenka tehnicheskogo sostojanija metallicheskih izdelij po plotnosti raspredelenija tverdosti po Rokvellu [Estimation of technical condition of metal products using Rockwell hardness test method]. Vestnik TSUAB, 2015. No. 1. Pp. 122−131. (rus)

15. Xiao L.L., Wang X.T., Li Y., Bulleit W.M. Reliability analysis on shear capacity of reinforced masonry wall due to earthquake. Applied Mechanics and Materials, 2012. V. 105. Pp. 360–365.

16. Kilinc K., Celik A.O., Tuncan M., Tuncan A., Arslan G., Arioz O. Statistical distributions of in situ microcore concrete strength. Construction and Building Materials, 2012. V. 26. No. 1. Pp. 393–403.

17. Vandamme M., Ulm F.J. Nanogranular origin of concrete creep. Proceedings of the National Academy of Sciences, 2009. V. 106. No. 26. Pp. 10552–10557.


Review

For citations:


Osipov S.P., Osipov O.S., Zhantybaev A.A., Podshivalov I.I., Prishepa I.A., Berzhenaru N.V. STRENGTH ESTIMATION OF CONCRETE PRODUCTS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2015;(5):90-100. (In Russ.)

Views: 546


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)