Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

DETERMINATION OF HEAT TRANSFER RESISTANCE IN NON-STATIONARY THERMAL CONDITIONS

https://doi.org/10.31675/1607-1859-2020-22-6-83-93

Abstract

One of the main normalized heat engineering indicators of enclosing structures is the resistance to heat transfer. On the territory of the CIS countries there are a huge number of real estate objects designed and built in accordance with outdated standards for the consumption of heat energy for heating and ventilation, requirements for the heat-protective shell of buildings, which leads to energy overspending. All real estate objects put into operation before the tightening of the above-mentioned standards require determining the actual thermal characteristics of the enclosing structures and bringing them into compliance with the current legislation. The article analyzes existing methods for determining the heat transfer resistance of enclosing structures in full-scale conditions, and identifies the advantages and disadvantages of these methods. Based on the fundamental research of construction Thermophysics, a mathematical model for determining the resistance to heat transfer in full-scale conditions is proposed, taking into account the shortcomings of existing methods.

About the Authors

A. N. Belous
Donbas National Academy of Civil Engineering and Architecture
Ukraine

Aleksei N. Belous, PhD, A/Professor

2, Derzhavin Str., 86123, Makiivka, Donetsk People's Republic

SPIN - 2311-2824



G. A. Kotov
Donbas National Academy of Civil Engineering and Architecture
Ukraine

German A. Kotov, PhD

2, Derzhavin Str., 86123, Makiivka, Donetsk People's Republic



D. A. Sapronov
Donbas National Academy of Civil Engineering and Architecture
Ukraine

Dmitriy A. Sapronov, Assistant Lecturer

2, Derzhavin Str., 86123, Makiivka, Donetsk People's Republic



B. A. Novikov
Donbas National Academy of Civil Engineering and Architecture
Ukraine

Bogdan A. Novikov, Research Assistant

2, Derzhavin Str., 86123, Makiivka, Donetsk People's Republic

SPIN - 5119-1402



References

1. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings.

2. Postanovlenie Pravitel'stva Rossiiskoi Federatsii N 603 ot 20 maya 2017 goda "O vnesenii izmenenii v postanovlenie Pravitel'stva Rossiiskoi Federatsii ot 25 yanvarya 2011 g. N 18" [Regulation of the Russian Government No. 603 of May 20, 2017 “Amendments to regulation of the Russian Government”, N 18, January 25, 2011]. Available: https://normativ.kontur.ru/document?moduleId=1&documentId (accessed August 20, 2020).

3. Alifanov O.M. O sostoyanii i perspektivakh razvitiya obratnykh zadach teploobmena v issledovanii teplovykh protsessov i proktirovanie tekhnicheskikh sistem [Development of inverse problems of heat transfer in thermal processes and design of engineering systems]. Minsk, 1977. 14 р. (rus)

4. Karslou G., Eger D. Teploprovodnost' tverdykh tel [Thermal conductivity of solids]. A.A. Pomerantsev, Ed. Moscow: Nauka, 1964. 488 р. (rus)

5. Stolz G. Numerical solutions to an inverse problem of heat conduction for simple shapes. ASME Journal of Heat Transfer. 1960. V. 82. No. 1. Pp. 20–26.

6. Shumakov N.V. Metod eksperimental'nogo izucheniya protsessa nagreva tverdogo tela [Solid body heating process]. Zhurnal tekhnicheskoi fiziki. 1957. V. 27. No. 4. Pp. 844–855. (rus)

7. Makarov R.A., Mureev P.N., Makarov A.N. Opredelenie fakticheskogo soprotivleniya teploperedache naruzhnykh sten, vypolnennykh iz kirpicha, zdanii postroiki 60–80-kh godov khkh veka [Determination of thermal resistance of external brick walls in buildings built in the 60–80s of the 20th century]. Fundamental'nye issledovaniya. 2015. V. 18. No. 2. Pp. 3960–3965. (rus)

8. Chernyshov V.N. Chernyshov A.V. Metod nerazrushayushchego kontrolya teplofizicheskikh kharakteristik stroitel'nykh materialov mnogosloinykh konstruktsii [Non-destructive testing of thermophysical characteristics of building materials for multilayer structures]. Vestnik TGTU. 2002. V. 8. No. 1 Pp. 128–133. (rus)

9. Pilipenko N.V. Lazurenko N.V. Metodika opredeleniya soprotivleniya teploperedache ograzhdayushchikh konstruktsii zdanii razlichnogo naznacheniya [Thermal resistance of walling systems of buildings for various purposes]. Nauchno-tekhnicheskii vestnik informatsionnykh tekhnologii, mekhaniki i optiki. 2006. V. 6. No. 8. Pp. 73–77. (rus)

10. D‟Agostino D., Zangheri P., Castellazzi L. Towards nearly zero energy buildings in Europe: A focus on retrofit in non-residential buildings. Energies. 2017. V. 10. No. 117. Pp. 1–15.

11. Manfren M., Aste N., Moshksar R. Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation. Applied Energy. 2013. V. 103. Pp. 627–641.

12. Revel G.M., Sabbatini E., Arnesalo M. Development and experimental evaluation of a thermography measurement system for real-time monitoring of comfort and heat rate exchange in the built environment. Measurement Science and Technology. 2012. V. 23. No. 3.

13. Chari A., Xanthos S. Stochastic assessment of the energy performance of buildings. Energy Efficiency. 2017. V. 8. No. 14.

14. Belous A.N. Overchenko M.V. Belous O.E. Perenosnoi teplotekhnicheskii izmeritel''nyi kompleks [Portable heat metering system design]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2020. V. 22. No. 1. Pp. 140–151.

15.


Review

For citations:


Belous A.N., Kotov G.A., Sapronov D.A., Novikov B.A. DETERMINATION OF HEAT TRANSFER RESISTANCE IN NON-STATIONARY THERMAL CONDITIONS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020;22(6):83-93. (In Russ.) https://doi.org/10.31675/1607-1859-2020-22-6-83-93

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)