Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

IMPROVEMENT OF METAL BRIDGE ROADWAY STRUCTURE DEPENDING ON DECK PAVEMENT OPERATING BEHAVIOR

https://doi.org/10.31675/1607-1859-2020-22-2-174-184

Abstract

The bridge pavement perceives millions of live load application cycles during its service life. Therefore, fatigue defects often occur in asphalt. These defects are associated with insufficient fatigue strength, for example, top-bottom cracks that appear after several years of operation and grow from top to bottom. These cracks cause more serious defects. It is necessary to prevent their occurrence.

The purpose of this article is to increase the asphalt service life on bridge superstructures by developing the pavement design method. To achieve this goal, the pavement fatigue strength is analyzed. Firstly, asphalt stress-strain state is determined under the heavy load. Secondly, a safe stress level is prescribed. At this stress level, asphalt receives the required load cycles without failure. A significant increase in the orthotropic steel deck stiffness is determined to be necessary.

The practical significance is the analysis of several ways to reduce asphalt stresses to the required level. The effectiveness of these methods is evaluated. New problems are identified that will enable the development of the computation method for the bridge pavement and its practical applications.

The originally includes the pavement fatigue strength analysis on road bridges with regard to the temperature influence on the asphalt fatigue strength. 

About the Author

S. Yu. Polyakov
Siberian State Transport University
Russian Federation

Sergei Yu. Polyakov, Engineer

191, Koval'chuk Str., 630049, Novosibirsk



References

1. Telegin M.A. Osobennosti rascheta tsel'nometallicheskikh proletnykh stroenii avtodorozhnykh mostov s uchetom sovmestnoi raboty ortotropnoi plity s glavnymi balkami i odezhdoi ezdovogo polotna. Diss. kand. tekhn. nauk. [Structural analysis of metal bridge span structures based on joint work of orthotropic steel deck with main beams and pavement. PhD Thesis]. Omsk, 2016. 213 p. (rus)

2. Yashnov A.N. Problemy naznacheniya i ekspluatatsii pokrytii na ortotropnoi plite proletnykh stroenii metallicheskikh mostov [Problems of application and operation of coatings on orthotropic plate of metal bridge span structures]. In: Materialy XLI Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Proc. 41st Int. Sci. Conf.). Almaty : KazATK, 2017. Pp. 354−358. (rus)

3. Design Manual for Orthotropic Steel Plate Deck Bridges. American Institute of Steel Construction. 1963, 237 p. Available: www.aisc.org/globalassets/aisc/publications/out-of-print/designmanual-for-orthotropic-steel-plate-deck-bridges.pdf (accessed February 21, 2019)

4. Belyaev N.N. Opyt chislennogo modelirovaniya raboty asfal'tobetonnykh pokrytii na ortotropnoi plite [Numerical simulation of asphalt concrete pavement on orthotropic plate]. In: Trudy pervogo vseross. dorozhn. kongressa (Proc. 1st All-Russ. Road Congress). Moscow, 2009. Pp. 60−70. (rus)

5. Yashnov A.N., Polyakov S.Yu. Ob odnom sposobe naznacheniya konstruktsii odezhdy ezdovogo polotna na ortotropnoi plite metallicheskikh mostov [Design method of deck pavement of metal bridges]. Vestnik Sibirskogo gosudarstvennogo universiteta putei soobshcheniya. 2018. No. 4 (47). Pp. 58−65. (rus)

6. Xianhua Chen, Xueyan Liu, Zhendong Qian, Zhang Lei. State-of-art of asphalt surfacing on long-spanned orthotropic steel deck in China. Available: https://pdfs.semanticscholar.org/ 2053/7a40b17c3e787cdbfec5d5003a38ff9ef00b.pdf (accessed February 21, 2019)

7. Sang Luo, Qing Lu. Condition survey and analysis of first epoxy asphalt concrete pavement on orthotropic bridges in China. A ten-year review. Available: http://qlu.myweb.usf.edu/epoxy_asphalt_manuscript_10.30.pdf (accessed February 21, 2019)

8. Ovchinnikov I.G., Ovchinnikov I.I., Il’chenko E.D., Pokrovskiy A.V., Morozov V.N., Derevyakin O.A. Problemy remonta dorozhnoi odezhdy na zhelezobetonnom mostu cherez Volgu [Problems of pavement repair of reinforced concrete bridge across the Volga Saratov − Engels]. Naukovedenie. 2014. No. 5 (24). Available: http://naukovedenie.ru/PDF/01KO514.pdf (accessed February 21, 2019)

9. Ovchinnikov I.G., Ovchinnikov I.I., Rasporov O.N., Rasporov K.O. Semnadtsat' let ekspluatatsii mostovogo perekhoda cherez Volgu u sela Pristannoe Saratovskoi oblasti [Seventeen years of operation and maintenance of the Volga river bridge crossing near the Pristannoye village, Saratov region]. Transportnye sooruzheniya. 2017. V. 4. No. 1. Available: http://t-s.today/issues/vol4-no1.html (accessed February 21, 2019)

10. Shcherbakov A.G. e. a. Prikladnaya mekhanika dorozhnykh odezhd na mostovykh sooruzheniyakh [Applied mechanics of road pavement on bridge structures]. Volgograd: VolgGASU, 2006. 220 p. (rus)

11. Kayumov R.A., Grishin I.V., Ivanov G.P. K raschetu pokrytii metallicheskikh mostov s ortotropnoi plitoi na temperaturnye vozdeistviya [Stress-strain state of steel bridge pavement on orthotropic slab]. Izvestiya KGASU. 2011. No. 3 (17). Pp. 171−178. (rus)

12. Mbaraga A.N., Jenkins K.J., J Van den Heever. Laboratory evaluation of fatigue and flexural stiffness of warm mix asphalt. Proc. 3rd Conf. ‘Four-Point Bending Beam’. University of California, Davis, CA, USA, 2012.

13. Bakhrakh G.S. Evolyutsiya metodov otsenki vynoslivosti asfal'tobetona [Development of methods for evaluating asphalt concrete endurance]. Dorogi i mosty. 2016. No. 2 (36). Pp. 288−300. (rus)

14. Kiryukhin G.N. Termofluktuatsionnaya i fraktal'naya model' dolgovechnosti asfal'tobetona [Thermal fluctuation and fractal model of asphalt concrete durability]. Dorogi i mosty. 2014. No. 1 (31). Pp. 247−268. (rus)

15. Teltaev B.B. Ustalostnaya destruktsiya asfal'tobetonnogo pokrytiya. Samoorganizatsiya i mekhanicheskoe tolkovanie [Fatigue failure of asphalt concrete pavement. 1. Self-organization and mechanical interpretation]. Izvestiya Natsional'noi akademii nauk Respubliki Kazakhstan. 2017. No. 3. Pp. 256−275. (rus)

16. Yazhen Sun, Chenze Fang, Jinchang Wang, Zuoxin Ma, Yolin Ye. Energy-based approach to predict fatigue life of asphalt mixture using three-point bending fatigue test. Available: www.mdpi.com/1996-1944/11/9/1696/pdf (accessed February 21, 2019)

17. Drovaleva O.V. Ustalostnaya dolgovechnost' asfal'tobetona pri vozdeistvii intensivnykh transportnykh nagruzok. Diss. kand. tekhn. nauk. [Fatigue life of asphalt concrete under intensive transport loads. PhD Thesis]. Rostov-on-Don, 2009. 201 p. (rus)

18. Radovskii B.S., Suprun A.S., Kozakov I.I. Proektirovanie dorozhnykh odezhd dlya dvizheniya bol'shegruznykh avtomobilei [Pavement design for heavy vehicles]. Kiev: Budivel'nik, 1989. 168 p. (rus)

19. Uglova E.V., Shilo O.A. Analiz kriteriev rascheta nezhestkikh dorozhnykh odezhd v usloviyakh vozdeistviya intensivnogo transportnogo potoka [Analysis of criteria for calculating non-rigid pavements in intense traffic flow]. Transportnye sooruzheniya. 2018. No. 3. Available: https://ts.today/PDF/14SATS318.pdf (accessed February 21, 2019)

20. Polyakov S.Yu. Proverka vynoslivosti asfal'tobetonnogo pokrytiya na ortotropnoi plite s uchetom temperaturnogo faktora [Endurance of asphalt concrete surface on n orthotropic slab under temperature factor]. Transportnye sooruzheniya. 2019. No. 3. DOI: 10.15862/09SATS319 (accessed September 29, 2019).

21. Radovskii B.S., Teltaev B.B. Vyazkouprugie kharakteristiki bituma i ikh otsenka po standartnym pokazatelyam [Viscoelastic bitumen properties and their evaluation by standard parameters]. Almaty: Bіlіm baspasy, 2013. 152 p. (rus)

22. Teltayev B.B., Radovskiy B.S. Predicting thermal cracking of asphalt pavements from bitumen and mix properties. Road Materials and Pavement Design, 2017. Available: www.researchgate.net/publication/318430967_Predicting_thermal_cracking_of_asphalt_pavements_ from_bitumen_and_mix_properties (accessed February 21, 2019)

23. Kiryukhin G.N. Obratimoe deformirovanie asfal'tobetona v zavisimosti ot uslovii nagru-zheniya [Reversible deformation of asphalt concrete under loading conditions]. Dorogi i mosty. 2017. No. 35. Pp. 233−256. (rus)

24. Ivanov N.N. e. a. Konstruirovanie i raschet nezhestkikh dorozhnykh odezhd [Design and calculation of nonrigid pavement]. Moscow: Transport, 1973. 317 p. (rus)

25. Zav'yalov M.A., Kirillov A.M. Modelirovanie izmeneniya modulya uprugosti asfal'tobetona pri nagruzhenii [Modeling of change in asphalt concrete dynamic modulus]. Inzhenerno-stroitel'nyi zhurnal. 2015. No. 2. Pp. 70−76. (rus)

26. Yashnov A.N., Polyakov S.Yu. Eksperimental'noe opredelenie napryazhenno-deformirovannogo sostoyaniya asfal'tobetonnogo pokrytiya na metallicheskikh mostakh [Experimental determination of the stress-strain state of asphalt concrete surface on metal bridges]. Nauchnyi zhurnal stroitel'stva i arkhitektury. 2018. No. 2 (50). Pp. 82−93. (rus)

27. Solov’ev L.Yu., Borisovskaya N.E. Proletnoe stroenie mosta [Bridge superstructure]. Patent Russ. Fed. N 173855. 2017. 4 p. (rus)


Review

For citations:


Polyakov S.Yu. IMPROVEMENT OF METAL BRIDGE ROADWAY STRUCTURE DEPENDING ON DECK PAVEMENT OPERATING BEHAVIOR. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020;22(2):174-184. (In Russ.) https://doi.org/10.31675/1607-1859-2020-22-2-174-184

Views: 619


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)