Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

HYDRAULIC PROPERTIES OF SAND SLURRY FLOW IN A PIPE

https://doi.org/10.31675/1607-1859-2020-22-2-129-144

Abstract

The sand slurry flow in a cylindrical pipe is investigated using the Ostwald de Waele model. The dependence of the fluid flow rate on the pressure drop is determined, dependencies for the radial distribution of velocity and effective viscosity of flow are obtained. It is shown that the distribution of effective viscosity is characterized by a monotonic increase as it approaches the pipe walls. As the consistency increases, the mechanical energy dissipation of the flow also increases leading to an increase in hydraulic resistance. During the flow of dilatant media with the low nonlinearity index, the hydraulic resistance decreases with increasing pressure drop. When this index is 2, the hydraulic resistance does not depend on the pressure drop and is determined only by the liquid properties and the channel size. At highe values of the nonlinearity index, the increased pressure drop leads to an increase in hydraulic resistance. Keywords

About the Authors

O. V. Matvienko
Tomsk State University of Architecture and Building; National Research Tomsk State University
Russian Federation

Oleg V. Matvienko, DSc, Professor, Department of Theoretical Mechanics ; Department of Physical and Computational Mechanics

2, Solyannaya Sq., 634003, Tomsk; 36, Lenin Ave., 634050, Tomsk



V. P. Bazuev
Tomsk State University of Architecture and Building
Russian Federation

Viktor P. Bazuev, PhD, Senior Scientist

2, Solyannaya Sq., 634003, Tomsk



I. S. Cherkasov
National Research Tomsk State University
Russian Federation

Ilya S. Cherkasov, Graduate Student

36, Lenin Ave., 634050, Tomsk



A. E. Litvinova
National Research Tomsk State University
Russian Federation

Alyona E. Litvinova, Graduate Student

36, Lenin Ave., 634050, Tomsk



References

1. Pokrovskaya V.N. Truboprovodniy transport v gornoy promyshlennosti [Pipelines in mining]. Moscow: Nedra, 1985. (rus)

2. Smoldyrev A.Ye., Safronov Yu.K. Truboprovodniy transport kontsentrirovannykh gidrosmesey [Pipeline transportation of concentrated slurries]. Moscow: Mashinostroenie, 1989. (rus)

3. Karpeyev V.A. Proizvodstvo vysokokachestvennykh stroitel'nykh peskov i utilizatsiya zoloshlakovykh otkhodov [Pipeline transport of concentrated hydromixtures]. Stroitel'nyye materialy. 1998. No. 10. Pp. 22−23. (rus)

4. Baranov Yu.D., Bljuss B.A., Semenenko E.V., Shurigin V.D. Obosnovanie parametrov i rezhimov raboty system hidrotransporta gornykh predpriyatiy [Justification of parameters and hydrotransport system operation at mining enterprises]. Dnepropetrovsk: Novaya ideologiya, 2006. (rus)

5. Vasil’eva M.A. Eksperimental’noe opredelenie raskhodno-napornykh kharakteristik gruntovykh nasosov v sisteme gidrotransporta khvostov obogashcheniya zheleznoy rudy [Experimental determination of flow-pressure characteristics of groundwater pumps in hydraulic system of iron ore tailing]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo. 2013. No. 6. Pp. 111−119. (rus)

6. Kril S.I. Napornie vzvesenesushchie potoki [Pressure slurry flows]. Kiev: Naukova dumka, 1990. (rus)

7. Kril S.I., Semenenko E.V. Metodika rascheta parametrov truboprovodnogo gidrotransporta raznoplotnostnykh polidispersnykh materialov [Parameter calculation of pipeline hydrotransport of disperse materials of different density]. Prikladnaya gidromekhanika. 2010. V. 12. No. 1. Pp. 48−54. (rus)

8. Kutepov A.M., Polyanin L.D. Zapryanov Z.D. Vyaz'min A.V., Kazenin D.A. Khimicheskaya gidrodinamnka: spravochnoye posobiye [Chemical hydrodynamics: manual]. Moscow: Byuro Kvantum, 1996. (rus)

9. Ostrovskiy G.M. Prikladnaya mekhanika neodnorodnykh sred [Applied mechanics of heterogeneous media]. St.-Petersburg: Nauka, 2000. (rus)

10. Prosvetov V.I., Sumets P.P., Verveyko N.D. Modeling of medium flow with homogeneous microstructure. International Journal of Mathematical Models and Methods in Applied Sciences. 2011. V. 5. No. 1. Pp. 508−516.

11. Malkin A.Ya., Isayev A.I. Reologiya: kontseptsii, metody, prilozheniyav [Rheology: concepts, methods, applications]. St.-Petersburg: Professiya, 2007. 560 p. (rus)

12. Matviyenko O.V., Unger F.G., Bazuyev V.P. Matematicheskiye modeli proizvodstvennykh protsessov dlya prigotovleniya bitumnykh dispersnykh system [Mathematical models of production processes for preparation of bituminous dispersion systems]. Tomsk: TSUAB, 2015. (rus)

13. Klimov D.M., Petrov A.G., Georgiyevskiy D.V. Vyazkoplasticheskiye techeniya: dinamicheskiy khaos, ustoychivost' i peremeshivaniye [Viscoplastic currents: dynamic chaos, stability and mixing]. Moscow: Nauka, 2005. (rus)

14. Wilkinson U.L. Nen'yutonovskiye zhidkosti [Non−Newtonian fluids]. Moscow: Mir, 1964. (rus)

15. Barnes, H.A. A handbook of elementary rheology. Institute of Non−Newtonian Fluid Mechanics, University of Wales. 2000.

16. Jiao D., Sharma M.M. Investigation of dynamic mud cake formation: The concept of minimum overbalance pressure. SPE 26323, Proc. SPE 68th Annual Tech. Conf. and Exhibition, Houston, TX, 1993.

17. Ferraris C. Measurement of the rheological properties of high-performance concrete. Journal Research of the National Institute of Standards and Technology. 1999. V. 104. Pp. 461–466.

18. Erdem T.K., Khayat K.H., Yahia A. Correlating rheology of self-consolidating concrete to corresponding concrete-equivalent mortar. Journal ACI Materials. 2009. V. 106. No. 2. Pp. 154−160.

19. Tattersall G.H., Banfill P.F.G. The rheology of fresh concrete. Pitman. 1983.

20. Matvienko O.V., Bazuev V.P., Venik V.N., Smirnova N.G. Numerical investigation of Herschel - Bulkley fluids mixing. In: IOP Conf. Series: Materials Science and Engineering Advanced Materials in Construction and Engineering. Ser. ‘International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering, TSUAB 2014’. 2015. P. 012034.

21. Matvienko O.V., Bazuev V.P., Sabylina N.R., Aseeva A.E., Surtaeva A.A. Issledovanie ustanovivshegosya techeniya vyazkoplasticheskogo bitumnogo vyazhushchego, opisyvaemogo model''yu Shvedova – Bingama, v tsilindricheskoi trube [Shvedov-Bingham model of steady flow of visco-plastic bitumen binder in cylindrical tube]. Vestnik Tomskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta – Journal of Construction and Architecture. 2019. V. 20. No. 3. Pp. 158–177. DOI: 10.31675/1607-1859-2019-21-3-158-177. (rus)

22. Matvienko O.V., Bazuyev V.P., Dul'zon N.K. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka vyazkoplasticheskoy zhidkosti v tsilindricheskom kanale [Mathematical simulation of twisted flow of viscoplastic liquid in cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2014. V. 87. No. 5. Pp. 1129−1137. (rus)

23. Matvienko O.V., Bazuyev V.P., Aseeva A.E. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka psevdoplasticheskoy zhidkosti Balkli–Gershelya v tsilindricheskom kanale. Inzhenerno-fizicheskiy zhurnal. 2019. V. 92. No. 1. Pp. 215–226. (rus)

24. Matvienko O.V., Bazuyev V.P., Aseeva A.E. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka dilatantnoy zhidkosti Balkli–Gershelya v tsilindricheskom kanale [Mathematical simulation of Herschel–Bulkley fluid in a cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2019. V. 92. No. 6. Pp. 2641–2651. (rus)

25. Matvienko O.V., Bazuyev V.P., Yuzhanova N.K. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka dilatantnoy zhidkosti v tsilindricheskom kanale [Mathematical simulation of twisted dilatant fluid in cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2014. V. 87. No. 1. Pp. 192–199. (rus)

26. Matvienko O.V., Bazuyev V.P., Yuzhanova N.K. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka psevdoplasticheskoy zhidkosti v tsilindricheskom kanale [Mathematical simulation of swirling flow of pseudoplastic fluid in a cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2011. V. 84. No. 3. Pp. 544–547. (rus)

27. Matvienko O.V. Issledovaniye ustanovivshegosya techeniya psevdoplasticheskoy zhidkosti, opisyvayemoy model'yu Sisko, v tsilindricheskoy trube [Stable flow of a pseudoplastic liquid described by the Sisko model in cylindrical tube]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 2018. No. 55. Pp. 99−112.

28. Matvienko O.V. Chislennoye issledovaniye techeniya nen'yutonovskikh zhidkostey v tsilindricheskom kanale [Numerical study of non-Newtonian fluids in cylindrical channel]. Izvestiya vysshikh uchebnykh zavedeniy. Fizika. 2014. V. 57. No. 8-2. Pp. 183−189. (rus)

29. Matvienko O.V., Bazuev V.P., Cherkasov I.S., Litvinova A.E. Techenie bitumnogo vyazhushchego, opisyvaemogo model''yu Ostval''da – de Veilya, v tsilindricheskoi trube [Liquid asphalt binders in cylindrical tube in terms of the Ostwald-de Waele model]. Vestnik Tomskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta – Journal of Construction and Architecture. 2020. V. 22. No. 1. Pp. 171–192. DOI: 10.31675/1607-1859-2020-22-1-171-192 (rus)


Review

For citations:


Matvienko O.V., Bazuev V.P., Cherkasov I.S., Litvinova A.E. HYDRAULIC PROPERTIES OF SAND SLURRY FLOW IN A PIPE. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020;22(2):129-144. (In Russ.) https://doi.org/10.31675/1607-1859-2020-22-2-129-144

Views: 564


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)