Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

PROCESSES OF CARBONIZING SHRINKAGE OF CONSTRUCTION MATERIALS

https://doi.org/10.31675/1607-1859-2019-21-3-178-194

Abstract

Relevance: This paper studies the durability of structures made of various building materials and the effect of carbon dioxide on building materials with a view to reduce its aggressive and destructive effects. Purpose: The aim of the paper is to identify and eliminate the causes of the building material destruction during their carbonization. Materials/Methods: Silicate brick, cement stone and concrete. Research findings: Research is carried out into the destruction of wall structures made of calcium silicate brick and carbon dioxide corrosion of hydration products in calcium silicate brick and cement brick in concrete. It is found that carbonization in hydration products results in their transfer to a denser state which is accompanied by the reduction in the volume of shrinking deformations which cause sometimes the breach and fracture of material. When considering the water/cement system, it is shown that more credible and visible results on shrinkage processes can be obtained through parameters of its volume phase composition which allow controlling the parameters of the structure rearrangement from the initial to final states of the system, i.e. from cement paste to cement brick hardened at different time intervals. It is shown that after 28 days of hardening, the degree of filling the initial pore space with hydration products reaches 67%, while the porosity of cement brick in the final state is 16.5% at the initial composition of the solid phase Fs1 = 0.5; 13.5% at Fs1 = 0.55; 12.8% at Fs1 = 0.6; 11.2% at Fs1 = 0.65 and 0.7-9.0% at Fs1 = 0.7. It follows that shrinkage processes intensify in cement paste with the initial porosity over 40-50 %. It is possible to reduce the negative effect from shrinkage processes via the addition of carbonate-containing mineral additives such as lime rock or dolomite to the cement or lime and sand composition.

About the Authors

V. K. Kozlova
Polzunov Altai State Technical University
Russian Federation

Valentina K. Kozlova, DSc, Professor

46, Lenin Ave., 656038, Barnaul



V. A. Lotov
National Research Тоmsk Polytechnic University
Russian Federation

Vasilii A. Lotov, DSc, Professor

30, Lenin Ave., 634050, Tomsk



Yu. S. Sarkisov
Тоmsk State University of Architecture and Building
Russian Federation

Yurii S. Sarkisov, DSc, Professor

2, Solyanaya Sq., 634003, Tomsk



V. V. Logvinenko
Polzunov Altai State Technical University
Russian Federation

Vladimir V. Logvinenko, PhD, A/Professor

46, Lenin Ave., 656038, Barnaul



I. A. Rakhmanova
Тоmsk State University of Architecture and Building
Russian Federation

Irina A. Rakhmanova, Senior Lecturer

2, Solyanaya Sq., 634003, Tomsk



E. V. Bozhok
Polzunov Altai State Technical University

Evgeniya V. Bozhok, Research Assistant

46, Lenin Ave., 656038, Barnaul



References

1. Moskvin V.M., Ivanov F.M., Alekseev S.N., Guzeev Ye.A. Korroziya betona i zhelezobetona, metody ikh zashchity [Concrete and reinforced concrete corrosion and protection methods]. Moscow: Stroyizdat, 1980. 536 p. (rus)

2. Rao N.V., Meena T. A review on carbonation cement carbon dioxide. IOP Conference Series: Materials Science and Engineering. 2017. V. 263. No. 3. P. 032011.

3. Yin S.-H., Yang Y.-F., Zhang T.-S. Guo G.-F., Yu F. Effect of carbonic acid water on the degradation of Portland cement paste: Corrosion process and kinetics. Construction and Building Materials. 2015. V. 91. Pp. 39–46.

4. Šavija B., Luković M. Carbonation of cement paste: Understanding, challenges, and opportunities. Construction and Building Materials. 2016. V. 117. Pp. 285–301.

5. Fedosov S.V., Bazanov S.M. Sulfatnaya korroziya betona [Sulfate corrosion of concrete]. Moscow: ASV, 2003. 168 p. (rus)

6. Gilmutdinov T.Z., Fedorov P.A., Latypov V.M., Lutsyk E.V., Latypova T.V. Carbonation of concrete taking into account the cracks in the protective concrete layer. Journal of Engineering and Applied Sciences. 2017. V. 12. No. 15. Pp. 4406–4413.

7. Gu T., Guo X., Li Z., Cheng X., Fan X., Korayem A., Duan W.H. Coupled effect of CO2 attack and tensile stress on well cement under CO2 storage conditions. Construction and Building Materials. 2017. V. 130. Pp. 92–102.

8. Bulatov A.I., Danyushevskiy V.S. Tamponazhnyye materialy [Plugging materials]. Moscow: Nedra, 1987. 280 p. (rus)

9. Alsaiari H.A., Aramco S., Sayed M., Reddy B.R., Metouri S., Al-Taie I. The importance of the stability of cement sheaths: Interaction between cement, acid, carbon steel and formation and treatment fluids. Society of Petroleum Engineers. SPE Abu-Dhabi International Petroleum Exhibition and Conference. 2017. V. 2017.

10. Elgalhud A.A., Dhir R.K., Ghataora G.S. Carbonation resistance of concrete: Limestone addition effect. Magazine of Concrete Research. 2017. V. 69. No. 2. Pp. 84–106.

11. Babushkin V.I. Fiziko-khimicheskiye protsessy korrozii betona i zhelezobetona [Physicochemical processes of concrete and reinforced concrete corrosion]. Moscow: Stroyizdat, 1968. 186 p. (rus)

12. Gawel R., Todorovic J. Liebscher A., Wiese B., Opedal N. Study of materials retrieved from CO2 monitoring well. Conference Paper. Energy Procedia. 2017. V. 114. Pp. 5799–5815.

13. Olsen R., Leirvik K.N., Kvamme B., Kuznetsova N. Journal of Physical Chemistry. 2016. V. 120. No. 5. Pp. 29264–29271.

14. Volf A.V., Bozhok Ye.V, Kozlova V.K. O neobkhodimosti povysheniya trebovaniy k pokazatelyam, kharakterizuyushchim dolgovechnost silikatnogo kirpicha [Improving the requirements for durability parameters of calcium silicate brick]. Stroysib 2016: Sbornik nauchnykh trudov [Collected Papers Stroysib 2016]. Novosibirsk, 2016. Pp. 37–41. (rus)

15. Taylor H.F.W. Khimiya tsementa [Cement chemistry]. Moscow: Mir, 1996. 560 p. (transl. from Engl.)

16. Beck J., Feng R., Hall D.M., Buyuksagis A., Ziomek-Moroz M., Lvov S.N. Effects of H2S and CO2 on cement/casing interface corrosion integrity for cold climate oil and gas well applications. ECS Transactions. 2016. V. 72. No. 17. Pp. 107–122.

17. Feklichev V.G. Diagnosticheskiye spektry mineralov [Diagnostic spectra of minerals]. Moscow: Nedra, 1977. 228 p.

18. Glukhovskii V.D., Runova R.F. Svoistva dispersnykh produktov gidratatsii tsementa [Properties of dispersed cement hydration products]. Shestoi mezhdunarodnyi kongress po khimii tsementa (Proc. Int. Congr. on Cement Chemistry). Moscow: Stroiizdat, 1976. V. 2. Book 1. Pp. 90–94. (rus)

19. Patel V.N., Shah N. Durability study of binary blended high performance concrete. Indian Concrete Journal. 2016. V. 90. No. 10. Pp. 24–31.

20. Kozlova V.K., Karpova Yu.V. O sostave produktov gidrotermalnogo sinteza i ikh ustoychivosti pri deystvii uglekislogo gaza [Hydrothermal synthesis products and their stability under CO2 effect]. Rezervy proizvodstva stroitelnykh materialov: Materialy Mezhdunarodnoy nauchnotekhnicheskoy konferentsii (Proceedings of international scientific conference „Construction Materials Production Reserves‟). Barnaul, 1997. P. 37. (rus)

21. Neville A.M. Svoistva betona [Properties of concrete]. Moscow: Publishing house of literature on construction, 1972. 343 p. (transl. from Engl.)

22. Aguirre-Guerrero A.M., Mejia-De-Gutierrez R., Montes-Correia M.J.R. Corrosion performance of blended concretes exposed to different aggressive environments. Construction and Building Materials. 2016. V. 121. Pp. 704–716.

23. Sarkisov Yu.S., Kozlova V.K., Bozhok Ye.V., Malova Ye.Yu., Manokha A.M. Vliyaniye karbonatnykh dobavok na usadochnyye deformatsii tsementnogo kamnya [Carbonate additives and shrinkage deformations in cement brick]. Tekhnika i tekhnologiya silikatov. 2004. V. 25. No. 1. Pp. 7–11. (rus)

24. Pan H., Yang Z., Xu F. Study on concrete structures durability considering the interaction of multi-factors. Construction and Building Materials. 2016. V. 118. Pp. 256–261.

25. Lotov V.A. Izmeneniye fazovogo sostava sistemy tsement-voda pri gidratatsii i tverdenii [Phase composition of cement/water system at hydration and hardening]. Izvestiya Tomskogo politekhnicheskogo universiteta. 2012. V. 321. No. 3. Pp. 42–45. (rus)

26. Lotov V.A. O vzaimodeystvii chastits tsementa s vodoy ili variant mekhanizma protsessov gidratatsii i tverdeniya tsementa [Interaction of cement particles with water or cement hydration hardening mechanisms]. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. V. 329. No. 1. Pp. 99–110. (rus).


Review

For citations:


Kozlova V.K., Lotov V.A., Sarkisov Yu.S., Logvinenko V.V., Rakhmanova I.A., Bozhok E.V. PROCESSES OF CARBONIZING SHRINKAGE OF CONSTRUCTION MATERIALS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2019;(3):178-194. (In Russ.) https://doi.org/10.31675/1607-1859-2019-21-3-178-194

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)