Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

CONCRETE STRENGTH in DIFFERENT ENVIRONMENTAL CONDITIONS DEPENDING ON ELECTRICAL HEATING PARAMETERS

https://doi.org/10.31675/1607-1859-2018-20-6-187-198

Abstract

Concreting of thin-walled structures and elements of medium massiveness is performed using the electrical heating method. Approximate calculations according to existing methods do not take into account many factors in concrete curing during winter concreting. All approximations and simplifications do not provide the proper temperature concrete curing in winter, clear distribution of temperature fields, the nature of structural temperature changes with time. Modeling with the use of modern software and computer systems can solve this problem.

The paper proposes a method of parametric analysis of the concrete strength generation using a heating cable. The method includes computational models of thermal conductivity for three types of formwork and using the ELCUT software package for calculating non-stationary temperature fields at various ambient temperature, wind speeds and space for laying heating cable. The analysis the temperature fields in concrete with regard to the exposure time, makes it possible to estimate its strength development. It is shown that in formwork 6 the temperature field is the most uniform, while in formwork 2 it is the least uniform. Formworks 4 and 6 with 300 mm space for cable laying provide the most effective electrical heating of thin-wall structures.

About the Authors

K. S. Gauss
Tomsk State University of Architecture and Building.
Russian Federation

Research Assistant.

2, Solyanaya Sq., 634003, Tomsk.



R. I. Mokshin
Tomsk State University of Architecture and Building.
Russian Federation

Graduate Student.

2, Solyanaya Sq., 634003, Tomsk.



N. I. Kuldyrkaeva
Tomsk State University of Architecture and Building.
Russian Federation

Graduate Student.

2, Solyanaya Sq., 634003, Tomsk.



D. I. Mokshin
Tomsk State University of Architecture and Building.
Russian Federation

PhD, A/Professor.

2, Solyanaya Sq., 634003, Tomsk.



References

1. Krylov B.A. Nekotorye voprosy tehnologii proizvodstva rabot pri primenenii monolitnogo betona v holodnoe vremja goda [Construction practice in using mass concrete in winter conditions]. Tekhnologii betonov. 2012. No. 1–2 (66–67). Pp. 33–35. (rus)

2. Golovnev S.G. Zimnee betonirovanie: jetapy stanovlenija i razvitija [Winter concreting: the stages of formation and development]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2013. V. 31 (50). Pp. 529–534. (rus)

3. Mironov S.A. Teorija i metody zimnego betonirovanija [Theory and methods of winter concreting]. Moscow: Stroyizdat, 1975. 700 p. (rus)

4. Trembitsky S.M. Uslovija dostizhenija vysokih tempov i kachestva stroitel'stva zdanij iz monolitnogo zhelezobetona [Conditions for achieving high rates and quality of building construction using mass RF concrete]. Beton i zhelezobeton. 2008. No. 5. Pp. 8–11. (rus)

5. Afanasyev A.A. Tehnologii vozvedenija sborno-monolitnyh karkasnyh zdanij pri otricatel'nyh temperaturah [Construction low-temperature technology of prefabricated building system]. Vestnik MGSU. 2012. No. 4. Pp. 175–180. (rus)

6. Ronin V., Jonasson J.E. Investigation of the effective winter concreting with the usage of energetically modified cement (EMC)-material science aspects. 1994. V. 3. Pp. 24.

7. Yilmaz U.S., Turken H. The effects of various curing materials on the compressive strength characteristic of the concretes produced with multiple chemical admixtures. Scientia Iranica. 2012. V. 19. No. 1. Pp. 77–83.

8. Osipov A.M. Betonirovanie pri nizkih temperaturah [Low temperature concreting]. Inzhenernyi vestnik Dona. 2012. V. 23. No. 4-2 (23). Pp. 161. (rus)

9. Korytov Yu.A. Zimnee betonirovanie s primeneniem nagrevatel'nyh provodov [Winter concreting with the use of heating cables]. Mekhanizatsiya stroitel'stva. 2010. No. 3. Pp. 14–20. (rus)

10. Krasnovsky B.M. Inzhenerno-fizicheskie osnovy metodov zimnego betonirovanija [Engineering and physical principles of winter concreting methods]. Moscow: GASIS, 2007. 12 p. (rus)

11. Gnyrya A.I., Boyarintsev A.P., Korobkov S.V., Tishchenko K.Yu. Sbornik za-dach po tehnologii betonnyh rabot v zimnih uslovijah [Collection of tasks for concrete technology in winter conditions]. Tomsk: TSUAB, 2014. 412 p. (rus)

12. Babichev A.P., Babushkina N.A., Bratkovsky A.M., et al. Fizicheskie velichiny. Spravochnik [Physical quantities. Reference book]. Moscow Energoatomizdat, 1991. 1232 p. (rus)

13. Gnyrya A.I., Korobkov S.V. Tehnologija betonnyh rabot v zimnih uslovijah [Concrete technology in winter conditions]. Tomsk: TSUAB, 2011. 412 p.


Review

For citations:


Gauss K.S., Mokshin R.I., Kuldyrkaeva N.I., Mokshin D.I. CONCRETE STRENGTH in DIFFERENT ENVIRONMENTAL CONDITIONS DEPENDING ON ELECTRICAL HEATING PARAMETERS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(6):187-198. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-6-187-198

Views: 670


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)