Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

TWIN GEODESIC DOMES WITH ONE RADIUS

https://doi.org/10.31675/1607-1859-2018-20-6-98-106

Abstract

The paper proposes a method of forming geometric networks of one arch radius using regular spherical polyhedrons. A variant of network placing on a spherical icosahedron and, accordingly, on a sphere is proposed. The placement on the sphere of arches of one radius differs from the placement of meridians and is an effective solution for network with a smallest size of arch segments, with nodes of two intersecting arches formed on circles of the same radius and on regular spherical polyhedrons. The problem is solved by constructing an arches of the same radius using paired circles with two standard arch sizes. Several variants of the twin geodetic domes with the given stability loss are suggested.

About the Authors

V. I. Travush
The Russian Academy of Architecture and Construction Sciences.
Russian Federation

DSc, Professor, Vice-President RAAСS.

24, Bol'shaya Dmitrovka, 107031, Moscow.



V. D. Antoshkin
Ogarev Mordovia State University.
Russian Federation

DSc, A/Professor, Head of Department of Building Structures and Motor Road.

68, Bolshevistskaya Str., 430005, Saransk.



A. Y. Svyatkina
Ogarev Mordovia State University.
Russian Federation

Research Assistant.

68, Bolshevistskaya Str., 430005, Saransk.



References

1. Antoshkin V.D. Тhe problem of emplacement of triangular geometric net on the sphere with nodes on the same level. International Journal for Computational Civil and Structural Engineering. 2017. V. 13. No. 2. Pp. 154–160.

2. Antoshkin V.D. Effektivnye konstruktivno-tekhnolo-gicheskie resheniya sbornykh sfericheskikh kupolov [Effective constructively-technological solutions for prefabricated spherical domes]. Regional'naya arkhitektura i stroitel'stvo. 2015. No. 3 (24). Pp. 112–121. (rus)

3. Antoshkin V.D., Gudozhnikov S.S., Perfilieva O.I., Erofeeva I.V. Perspektivnye konstruktivno-tekhnologicheskie resheniya sbornykh sfericheskikh obolochek [Advanced technological solutions for prefabricated spherical shells]. Aktual'nye voprosy arkhitektury i Stroitel'stva: materialy Trinadtsatoi Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii: v 2 ch. (Proc. 13th Int. Sci. Conf. ‘Relevant Problems of Architecture and Construction’). 2014. Pp. 4–15. (rus)

4. Antoshkin V.D., Konovalov A.G. Sbornye sfericheskie obolochki iz shestiugol'nykh panelei [Prefabricated spherical shell of hexagonal panels]. Ogarev-Online. 2015. No. 13 (54). P. 6. (rus)

5. Antoshkin V.D., Kurbakov G.V., Bochkin V.S. Sposob montazha krivolineinoi konstruktsii [Method of installation of curved design tredoevropsky]. Vestnik pro Vedu a Vyzkum. 2015. V. 83. P. 1. (rus)

6. Antoshkin V.D., Kurganskii V.G. Stykovoe soedinenie derevyannykh elementov [Joint connection of wooden elements]. Author's Certificate. N 1661316. 1988. (rus)

7. Ezhov E.F., Yurkin Yu.V., Antoshkin D.V., Ezhov E.V. Postroenie linii vliyaniya v trekhsharnirnykh arkakh [Influence lines in three-link arches]. Sovremennye tekhnologii stroitel'nykh materialov i konstruktsii: materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii, posvyashchennoi-letiyu so dnya rozhdeniya akademika V.G. Shukhova (Proc. All-Russ. Sci. Conf. ‘Modern Technologies of Construction Materials’). Saransk, 2003. Pp. 160–164. (rus)

8. Travush V.I., Antoshkin V.D., Yerofeev V.T. Sbornaya sfericheskaya obolochka [Assemblable spherical shell]. Patent Rus. Fed. N 129534. 2013. (rus)

9. Travush V.I., Antoshkin V.D., Yerofeev V.T. Sbornaya sfericheskaya obolochka [Assemblable spherical shell]. Patent Rus. Fed. N 2520192.2013. (rus)

10. Travush V.I., Antoshkin V.D., Erofeeva I.V., Antoshkin D.V. Sbornaya sfericheskaya obolochka [Assemblable spherical shell]. Patent Rus. Fed. N 2564545 . 2014. (rus)

11. Travush V.I., Antoshkin V.D., Yerofeev V.T., Gudoshnikov S.S. Sovremennye konstruktivno-tekhnologicheskie resheniya sfericheskikh obolochek [Modern constructive and technological solutions of spherical shells]. Stroitel'stvo i rekonstruktsiya. 2012. No. 6 (44). Pp. 45–55. (rus)

12. Travush V.I., Antoshkin V.D., Yerofeev V.T., Gudoshnikov S.S. Konstruktivno-tekhnolo­gicheskie vozmozhnosti sbornykh sfericheskikh obolochek [Constructive-technological capabilities of assemblable spherical shells]. Stroitel'stvo i rekonstruktsiya. 2013. No. 6 (50). Pp. 36–48. (rus)

13. Travush V.I., Antoshkin V.D. The problem 7 forming triangular geometric line field. MATEC Web of Conferences. 2016 No. 86, P. 010. DOI: 10.1051/matecconf/20168601032

14. Travush V.I., Antoshkin V.D. The problem 4 of placement triangular geometric line field. MATEC Web of Conferences. 2016 No. 86, P. 010. DOI:10.1051/matecconf/20168601031

15. Тravush V.I., Antoshkin V.D. To the problem 5 of emplacement of triangular geometric net on the sphere. MATEC Web of Conferences. 2017. No. 106. P. 02003. DOI: 10.1051/matecconf/.201710602012

16. Travush V.I., Antoshkin V.D. To the problem 6 of emplacement of triangular geometric net on the sphere. MATEC Web of Conferences. 2017. No. 106. P. 02012. DOI: 10.1051/matecconf/201710602012

17. Software Scilab 5.4.1. The free platform for numerical computation. Available: www.softkumir.ru/index.

18. Korn G.A. Mathematical handbook for scientists and engineers, 1968.


Review

For citations:


Travush V.I., Antoshkin V.D., Svyatkina A.Y. TWIN GEODESIC DOMES WITH ONE RADIUS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(6):98-106. https://doi.org/10.31675/1607-1859-2018-20-6-98-106

Views: 736


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)