NUMERICAL SOLUTION OF PLANE PROBLEM OF ELASTICITY THEORY USING BOUNDARY EQUATION METHOD
https://doi.org/10.31675/1607-1859-2018-20-4-94-102
Abstract
The stress-strain state of a two-dimensional problem under the conditions of plane deformation is investigated using the method of boundary equations. A rectangular plate rigidly clamped into the base under conditions of plane deformation is studied under horizontal load distributed along the vertical face. Numerical experiments are carried out to analyze the stability of the solution, the convergence, and the accuracy of results obtained.
About the Author
O. A. KhodzhiboevTajikistan
Senior Scientist
References
1. Timoshenko S.P., Gud’er Dzh. Teorija uprugosti [Theory of elasticity]. Moscow: Nauka, 1975. 575 p. (rus)
2. Novackij V. Teorija uprugosti [Theory of elasticity]. Moscow: Mir, 1975. 872 p. (rus)
3. Brebbia C.A., Telles J.C.F., Wrobel L.C. Metody granichnyh uravnenij [Boundary element techniques: theory and applications in engineering]. Moscow: Mir, 1987. 524 p. (transl. from Engl.)
4. Nizomov D.N. Metod granichnyh uravnenij v reshenii staticheskih i dinamicheskih zadach stroitel'noj mehaniki [Bounday element method for static and dynamic problem of structural mechanics]. Moscow: ASV, 2000. 282 p. (rus)
5. Nizomov D.N., Hodzhiboev O.A., Hodzhiboev A.A. Granichnye uravnenija vzaimodejstvija sooruzhenija s uprugim poluprostranstvom [Boundary equations of interaction between structure and elastic half-space]. Doklady Akademii nauk Respubliki Tadzhikistan. Dushanbe, 2016. V. 59. No. 5–6. Pp. 229–235. (rus)
6. Nizomov D.N., Hodzhiboev A.A., Kalandarbekov I., Hodzhiboev O.A. Naprjazhennoe i deform-irovannoe sostojanija uglovyh zon v ploskoj zadache teorii uprugosti [Stress-strain state of angular areas in plane elastic problem]. Trudy mezhd. konf. po snizheniju sejsmicheskogo riska (Proc. Int. Sci. Conf. on Seismic Risk Reduction). Dushanbe, 2009. Pp. 157–163. (rus)
Review
For citations:
Khodzhiboev O.A. NUMERICAL SOLUTION OF PLANE PROBLEM OF ELASTICITY THEORY USING BOUNDARY EQUATION METHOD. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(4):94-102. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-4-94-102