COMBINED PROCESSING OF MIXING WATER FOR CEMENT SYSTEMS
https://doi.org/10.31675/1607-1859-2018-20-2-163-170
Abstract
X-ray phase analysis. In order to measure the compressive strength, (2×2×2)10–2 m specimens were prepared from cement paste. The water/cement ratio was selected as 0.38. Findings: A combined processing of mixing water with the ultrasound and the constant magnetic field results in a substantial increase in service characteristics of the cement brick. In comparison with test specimens, its compressive strength increases by 30–45 %. Research implications: The ultrasonic dispersion of mixing water is accompanied by such processes as the formation of various short-living particles and states in water, cavitation and others which, in turn, are sensitive to the magnetic field. As a result, the reactive capacity of water in relation to cement sharply increases and, as a consequence, the growth in cement strength is observed. Practical implications: The proposed method of the ultrasonic and magnetic-field modification of mixing water can be readily used in the production of cement-based construction materials.
About the Authors
Yu. S. SarkisovRussian Federation
Yuriy S. Sarkisov, DSc, Professor
2 Building 2, 634003, Tomsk, Russia
N. P. Gorlenko
Russian Federation
Nikolai P. Gorlenko, DSc, Professor
2 Building 2, 634003, Tomsk, Russia
A. A. Rubanov
Russian Federation
Aleksandr V. Rubanov, PhD, A/Professor
2 Building 2, 634003, Tomsk, Russia
V. V. Vergasov
Russian Federation
Vladimir V. Vergasov, Undergraduate
2 Building 2, 634003, Tomsk, Russia
References
1. Sarkisov Yu.S. Upravleniye protsessami strukturoobrazovaniya dispersnykh system [Dispersion system process control]. Izvestiya vuzov. Stroitel'stvo. 1993. No. 2. Pp. 106–109. (rus)
2. Gorlenko N.P., Sarkisov Yu.S. Nizkoenergeticheskaya aktivatsiya dispersnykh sistem [Low-energy sensitizing of dispersion systems]. Tomsk: TSUAB Publ., 2011. Pp. 2011–264. (rus)
3. Afanasyev D.A., Sarkisov Yu.S., Kugaevskaya S.A. Spektralnyye issledovaniya vody zatvoreniya, obrabotannoy postoyannym magnitnym polem [Spectral measurements of mixing water subjected to magnetostatic field]. Tekhnika i tekhnologiya silikatov. 2016. V. 23. No. 1. Pp. 12-18. (rus)
4. Vereshchagin V.I., Rikhvanov L.P., Sarkisov Yu.S., et al. Sinergeticheskiye printsipy sozdaniya stroitel'nykh i kompozitsionnykh materialov polifunktsional'nogo naznacheniya [Synergetic principles of creating building and composite materials]. Izvestiya TPU. 2009. V. 315. Pp. 12–15. (rus)
5. Lesovik V.S. Geonika (geometrika). Primery realizatsii v stroitel'nom materialovedenii [Geonika. Implementations in materials science in construction]. Belgorod: BSTU Publ., 2014. 206 p. (rus)
6. Lesovik V.S. Geonika. Predmet i zadachi [Geonika. Subject and tasks]. Belgorod: BSTU Publ., 2012. 213 p. (rus)
7. Sarkisov Yu.S. Vyazhushchie veshchestva na osnove oksidnykh sistem [Oxide-based binders]. Vestnik of Tomsk State University of Architecture and Building. 2013 . No. 1. Pp. 108–118. (rus)
8. Sarkisov Yu.S., Gorlenko N.P., Rahmanova I.A. Geonika: ot geokhimii bora k iskusstvennym materialam boratnogo tverdeniya [Geoniks: from borium geochemistry to man-made materials of borate concreting]. Polzunovskii vestnik. 2016. No. 3. Pp. 168–171. (rus)
9. Gorlenko N.P., Sarkisov Yu.S., Pavlova A.N., et al. Nizkoenergeticheskaya aktivatsiya vody kak sposob zelenykh tekhnologiy v proizvodstve stroitel'nykh materialov [Low-energy water activation as green technology method in material production]. Investitsii, stroitel'stvo, nedvizhimost' kak material'nyi bazis modernizatsii i innovatsionnogo razvitiya ekonomiki. Materialy VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Proc. 6th Int. Sci. Conf. ‘Investments, Construction, Real Estate as a Material Basis for Economy Modernization and Innovation’). March 14-17. 2017. Pp. 247–250. (rus)
10. Aseeva I.A. Filosofskiye i biotecheskiye aspekty razvitiya novykh konvergentnykh tekhnologiy kak faktor transformatsii sredy obitaniya cheloveka [Philosophy and biotical aspects of developing convergent innovative technology as transforming principle of human environment]. Filosofskie nauki. 2016. No. 2. Pp. 85–97. (rus)
11. Kopanitsa N.O., Safronov V.N., Demyanenko O.V., et al. Effektivnye retseptury i tekhnologii v stroitelnom materialovedenii [Efficient composition and technology in materials science]. Sbornik MNT konferentsii Novosibirskogo gos. agrarnogo un-ta (Coll. Papers of MNT Conf.). 2017. Pp. 122–127. (rus)
12. Abzaev Yu.A., Sarkisov Yu.S., Safronov V.N., et al. Vliyaniye tsiklovoy magnitnoy obrabotki vody zatvoreniya na strukturnoye sostoyaniye faz tsementnogo kamnya v raznykh srokakh tverdeniya [Cement brick structure modified by magnetic field water cycling after different periods of hardening]. Vestnik of Tomsk State University of Architecture and Building. 2016. No. 1. Pp. 145–154. (rus)
13. Sarkisov Yu. S., Gorlenko N.P., Safronov V.N., et al. Temperaturnyye otkliki vody i vodnykh rastvorov na vneshneye vozdeystviye magnitnym polem [Water and water solution temperature response to magnetic field effect]. Vestnik TGU. Khimiya. 2015. No. 2. Pp. 20–29. (rus)
14. Samchenko S.V. Formirovaniye i genezis struktury tsementnogo kamnya [Formation and genesis of cement stone structure]. Available: www/iprbookshop.ru/ (rus)
15. Rassadkin Yu.P. Voda obyknovennaya i neobyknovennaya [Ordinary and extraordinary water]. Moscow: Galereya STO Publ., 2008. 840 p. (rus)
Review
For citations:
Sarkisov Yu.S., Gorlenko N.P., Rubanov A.A., Vergasov V.V. COMBINED PROCESSING OF MIXING WATER FOR CEMENT SYSTEMS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(2):163-170. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-2-163-170