STRESS-STRAIN STATE FINITE ELEMENT MODEL OF PILE-FOUNDATION BRICK BUILDING VERTICAL EXTENSION
https://doi.org/10.31675/1607-1859-2018-20-2-137-149
Abstract
Relevance: Numerical simulation is provided for the stress-strain state of a pile-foundation brick building with the additional structure. The simulation is performed with MicroFe computer system which creates a model of the base – foundation – superstructure system. In this model, finite elements represent the piles. Purpose: The aim of the paper is to perform the finite element analysis of the base – foundation – superstructure system deformation and compare the theoretical and experimental results. Methodology/approach: Two approaches to the numerical simulation are used: 1) rigid foundation and 2) pliable foundation due to the pile displacement. Findings: The bay analysis based on the first approach shows that the stress values exceed the theoretical in some of the structures. The bay analysis based on the second approach shows that the reinforcement deficit amounts to less than 1 % as compared to the theoretical calculations. The obtained results on the estimated and actual displacement at the wall pedestal part show a 15 % difference. During constructing the additional structure, the calculated values of the stress achieve the maximum and exceed design values. With account of the piled foundation, the stress reduction is obtained in engineering structures. Results: The finite element model is designed for the base – foundation – superstructure system. As a result of comparison of theoretical and experimental results, the main parameters of the absolute and relative vertical pile displacement do not exceed the allowable values determined by the national standards.
About the Authors
S. V. YushchubeRussian Federation
Sergey V. Yushchube, PhD, A/Professor,
2, Solyanaya Sq., 634003, Tomsk, Russia
I. I. Podshivalov
Russian Federation
Ivan I. Podshivalov, PhD, A/Professor
2, Solyanaya Sq., 634003, Tomsk, Russia
R. V. Shalginov
Russian Federation
Roman V. Shalginov, PhD, A/Professor
2, Solyanaya Sq., 634003, Tomsk, Russia
D. G. Samarin
Russian Federation
Dmitriy G. Samarin, PhD, A/Professor
2, Solyanaya Sq., 634003, Tomsk, Russia
A. A. Filippovich
Russian Federation
Anna A. Filippovich, PhD, A/Professor
2, Solyanaya Sq., 634003, Tomsk, Russia
V. L. Ustyuzhanin
Russian Federation
Vladimir L. Ustyuzhanin, Engineer
2, Solyanaya Sq., 634003, Tomsk, Russia
A. E. Tryapitsin
Russian Federation
Andrey E. Tryapitsin, Lead Engineer
69, Frunze Ave., 34029, Tomsk, Russia
References
1. Yushchube S.V., Podshivalov I.I., Samarin D.G., et al. Eksperimental'noe issledovanie napryazhenno-deformirovannogo sostoyaniya fragmentov kladki naruzhnykh sten iz keramicheskogo kamnya [Experimental research of stress-strain state of ceramic brick masonry fragments]. Vestnik of Tomsk State University of Architecture and Buiding. 2017. No. 1. Pp. 174–180. (rus)
2. Ulitskii V.M., Shashkin A.G., Shashkin K.G. Geotekhnicheskoe soprovozhdenie razvitiya gorodov (prakticheskoe posobie po proektirovaniyu zdanii i podzemnykh sooruzhenii v usloviyakh plotnoi zastroiki [Geotechnical support of urban development]. St.-Petersburg: Stroiizdat Severo-Zapad Publ., 2010. 550 p. (rus)
3. Shashkin V.A. Effekty vzaimodeistviya osnovanii i sooruzhenii [Interaction between foundations and structures]. Razvitie gorodov i geotekhnicheskoe stroitel'stvo. 2012. No. 14. Pp. 141–167. (rus)
4. Shashkin A.G., Shashkin K.G. Vzaimodeistvie zdaniya i osnovaniya: metodika rascheta i prakticheskoe primenenie pri proektirovanii [Building-foundation interaction and practical design applications]. V.M. Ulitskii (Ed.). St.-Petersburg: Stroiizdat Publ., 2002. 48 p. (rus)
5. Karpenko N.I., Karpenko S.N., Kuznetsov E.N. O sovremennykh problemakh rascheta vysotnyi zdanii iz monolitnogo zhelezobetona [Calculation of high-rise buildings made of monolithic reinforced concrete]. II Vserossiiskaya (Mezhdunarodnaya) konferentsiya. Beton i zhelezo¬beton – puti razvitiya (Proc. 2nd Int. Sci. Conf. ‘Concrete and Reinforced Concrete – Glance at Future’). 2005. V. 1. Рр. 149–166 p. (rus)
6. Shashkin K.G. Ispol'zovanie uproshchennykh modelei osnovaniya dlya resheniya zadach sovmestnogo rascheta osnovaniya i konstruktsii sooruzheniya [Simplified foundation models for structural analysis]. Available: www.georec.narod.ru/mag/1999n1/9.htm (rus)
7. Il'ichev V.A., Mangushev R.A. (Eds) Spravochnik geotekhnika. Osnovaniya, fundamenty i podzemnye sooruzheniya [Foundations and underground structures manual]. Moscow: ASV Publ., 2014. 728 p. (rus)
8. Kravchenko V.S., Kriksunov E.Z., Perel'muter M.A., Skoruk L.N. SCAD structura. Raschet osnovanii i fundamentov. Rukovodstvo pol'zovatelya [SCAD Structure. Guide for foundation analysis. Version 1.1]. Moscow, 2006. 33 p. (rus)
9. Koval'chuk O.A., Kolesnikov A.V., Rusanova E.M., et al. Vvedenie v programmnyi kompleks LIRA 10.4 [Introduction to LIRA 10.4 program package]. Moscow: MGSU Publ., 2015. Available: http://lira-soft.com/wiki/manuals (rus)
10. PLAXIS Finite element code for soil and rock analyses. St.-Petersburg: NIP-Informatika, 2004. 274 p.
11. Brinkgreve R.B.J., Broere W. (Eds). PLAXIS 3D foundation. Abingdon: Balkema, 2004. V. 1.
12. MicroFe-SDK. Programmnyi kompleks konechno-elementnykh raschetov prostranstvennykh konstruktsii na prochnost', ustoichivost' i kolebaniya [MicroFe-SDK software for finite-element analysis of spatial structures]. OOO ‘TEKhSOFT’, 2015. Available: www.tech-soft.ru (rus)
Review
For citations:
Yushchube S.V., Podshivalov I.I., Shalginov R.V., Samarin D.G., Filippovich A.A., Ustyuzhanin V.L., Tryapitsin A.E. STRESS-STRAIN STATE FINITE ELEMENT MODEL OF PILE-FOUNDATION BRICK BUILDING VERTICAL EXTENSION. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(2):137-149. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-2-137-149