Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Thermal Plasma Effect on Ceramic Microsphere Formation. Part 1. Heating and Evaporation

Abstract

The paper considers the process of heat transfer between thermal plasma and agglomerated SiO2 particle. The dispersion boundaries of particles entering the thermal plasma flow are calculated in the paper. The experiment parameters include 3500 K temperature, 1-2×106 W/m2 specific heat flow, and 122 m/s flow velocity. The effect of the initial particle porosity on the dynamics of heating and evaporation during their motion in plasma flow is described. The model of the concentration liquid phase containing in particle with allowance for the actual chemical composition is proposed taking into account calculations of heating and evaporation dynamics of agglomerated particles in thermal plasma flow.

About the Authors

Valentin V. Shekhovtsov
Tomsk State University of Architecture and Building
Russian Federation


Oleg G. Volokitin
Tomsk State University of Architecture and Building
Russian Federation


Gennady G. Volokitin
Tomsk State University of Architecture and Building
Russian Federation


Nelli K. Skripnikova
Tomsk State University of Architecture and Building
Russian Federation


Anatoly A. Anshakov
Kutateladze Institute of Thermal Physics SB RAS
Russian Federation


Victor I. Kuzmin
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Russian Federation


References

1. Levitsky V.S. Issledovaniye struktury i sostava plenochnykh zol'-gel'-sistem CoOx–SiO2 [Investigation of the structure and composition of film sol-gel-derived CoOx-SiO2 systems]. Physics of the Solid State. 2014. V. 56. No. 2. Pp. 270–275.

2. Kawashita M., Matsui N., Li Zh., Miyaza T. Preparation of porous yttrium Oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium. Ions. J. Mater. Sci.: Mater. Med. 2010. No. 21. Pp. 1837–1843.

3. Zhukov A.S. Arkhipov V.A., Bondarchuk S.S., Goldin V.D. Otsenka morfologii chastits pri plazmokhimicheskom sinteze keramicheskikh poroshkov [Evaluation of particle morphology in plasma-chemical synthesis of ceramic powders]. Khimicheskaya fizika. 2013. V. 32. No. 12. Pp. 1–6. (rus)

4. Arkhipov V.A., Kozlov E.A., Zharova I.K., Titov S.S., Usanina A.S. Evolution of a liquid-drop aerosol cloud in the atmosphere. Arabian Journal of Geosciences. 2016. V. 9. No. 2. Pp. 1–10.

5. Shekhovtsov V.V., Volokitin O.G., Kondratyuk A.A., Vitske R.E. Fly ash particles spheroidization using low temperature plasma energy. IOP Conf. Series: Materials Science and Engineering. 2016. No. 156. 012043.

6. Shekhovtsov V.V., Volokitin G.G., Skripnikova N.K., Volokitin О.G., Gafarov R.E. Plasma treatment of agglomerating aluminosilicate powders based on coal ash. AIP Conference Proceedings. 2017. No. 1800. 020008.

7. Solonenko O.P., Gulyaev I.P., Smirnov A.V. Thermal plasma processes for production of hollow spherical powders: theory and experiment. Journal of Thermal Science and Technology. 2011. V. 6. No. 2. Pp. 219–234.

8. Shekhovtsov V.V., Vlasov V.A., Volokitin G.G., Volokitin O.G. Ispol'zovaniye nizkotemperaturnoy plazmy dlya polucheniya zol'nykh mikrosfer [Low-temperature plasma used tor obtain ash microspheres]. Izvestiya vysshikh uchebnykh zavedenii. Fizika. 2016. V. 59. No. 9-3. Pp. 305–305. (rus)

9. Volokitin G.G., Shekhovtsov V.V., Skripnikova N.K., Volokitin O.G., Volland S. Fizikokhimicheskiye protsessy polucheniya zol'nykh mikrosfer s ispol'zovaniyem nizkotemperaturnoy plazmy [Physico–chemical processes of spherical particle production using lowtemperature plasma]. Vestnik of Tomsk State University of Architecture and Building. 2016. No. 3. Pp. 139–145. (rus)

10. Arkhipov V.A., Bondarchuk S.S., Shekhovtsov V.V., Volokitin O.G., Anshakov A.S., Kuz'min V.I. Modelirovaniye protsessa polucheniya polykh chastits kremnezema v plazmennom potoke. Chast' 1. Dinamika dvizheniya i nagreva poristykh chastits [Simulation of production process for hollow silica particles in plasma flow. Part 1. Dynamics of motion and heating of porous particles]. Teplofizika i aeromekhanika. 2017. (rus)

11. Volkov A.I., Zharskiy I.M. Bol'shoy khimicheskiy spravochnik [Big chemical handbook]. Minsk: Sovremennaya shkola Publ., 2005. 608 p. (rus)

12. Gulyaev I. Experience in plasma production of hollow ceramic microspheres with required wall thickness. Ceramics International. 2015. V. 41. No. 1. Pp. 101–107.

13. Pashchenko A.A., et al. Fizicheskaya khimiya silikatov [Physical chemistry of silicates]. Moscow: Vysshaya Shkola Publ., 1986. 368 p. (rus)

14. Abzaev Yu.A., Volokitin G.G., Skripnikova N.K., Volokitin O.G., Shekhovtsov V.V. Issledovanie protsessov plavleniya kvartsevogo peska s pomoshch'yu energii nizkotemperaturnoi plazmy [Investigation of silica sand melting using low-temperature plasma energy]. Steklo i keramika. 2015. No. 6. Pp. 44–46. (rus)


Review

For citations:


Shekhovtsov V.V., Volokitin O.G., Volokitin G.G., Skripnikova N.K., Anshakov A.A., Kuzmin V.I. Thermal Plasma Effect on Ceramic Microsphere Formation. Part 1. Heating and Evaporation. Vestnik of Tomsk state university of architecture and building. 2017;(5):143-150. (In Russ.)

Views: 608


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)