Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Acoustic Method of Measuring Thermal Conductivity of Construction Materials

Abstract

ACOUSTIC METHOD OF MEASURING THERMAL CONDUCTIVITY OF CONSTRUCTION MATERIALS Materials science in construction often faces the problem connected with measurements based on calibrating, extrapolational and adjustable dependences. The technological properties can be estimated by these dependences, however, the determination of thermal conductivity requires new measuring methods. This method is based on the properties of the composition and structure of the foam glass-ceramic material. The paper presents a simple non-destructive acoustic method for measuring thermal conductivity. A new foam glass-ceramic material modified by nanostructured zirconium dioxide particles is investigated in this paper. It is shown that zirconium dioxide significantly modifies the vibration spectrum and photon scattering responsible for heat transfer.

About the Authors

Aleksandr V. Votinov
Tomsk State University of Architecture and Building
Russian Federation


Boris S. Semukhin
Tomsk State University of Architecture and Building; Institute of Strength Physics and Materials Science
Russian Federation


Gennadii I. Kovalev
Tomsk State University of Architecture and Building
Russian Federation


References

1. Yuping He, Davide Donadio,·Giulia Galli. Heat transport in amorphous silicon: Interplay between morphology and disorder. Applied Physics Letters. 2011. V. 98. No. 14. P. 144101.

2. Bodapati A., Keblinski P., Schelling P.K., Phillpot S.R. Crossover in thermal transport mechanism in nanocrystalline silicon. Applied Physics Letters. 2006. V. 88. P. 141908.

3. Jonas Bünz, Tobias Brink, Koichi Tsuchiya, Fanqiang Meng, Gerhard Wilde, Karsten Albe. Low temperature heat capacity of a severely deformed metallic glass. Bünz, Physical Review Letters. 2014. V. 112. No. 13. P. 135501.

4. Samoilenko I.I., Uglova T.K., Tatarintseva O.S. Vliyanie dispersnosti stekol'noi shikhty na strukturu i svoistva penostekla [Effect of glass mixture dispersiveness on glass foam]. Glass and Ceramics. 2014. No. 6. Pp. 3–6. (rus)

5. Kazantseva L.K., Storozhenko G.I. Osobye svoistva penostekla iz prirodnogo syr'ya [Properties of glass foam based on natural raw materials]. Construction Materials. 2013. No. 9. Pp.34–39. (rus)

6. Korolenko A.V., Maslov V.A., Trigub S.N., Tovstokoryi O.N. Maskiruyushchie svoistva penostekla ot ul'trafioletovogo i rentgenovsgo izluchenii [Masking glass foam for ultraviolet and Xray radiaitons]. Herald of Khmelnytskyi National University. Tekhnicheskie nauki. 2014. No. 2 (211). Pp. 73–76. (rus)

7. Ratiba Benzerga, Vincent Laur, R. Lebullenger, Laurent Le Gendre, Sébastien Genty, et al. Materials Research Bulletin. 2015. V. 67. Pp. 261–265.

8. Karpov D.F., Pavlov M.V., Sinitsyn A.A., Kalyagin Yu.A., Gavrilov Yu.S., Pogodin D.A. Eksperimenl'no-raschetnoe opredelenie koeffitsienta temperaturoprovodnosti tverdogo tela na primere silikatnogo kirpicha pri nestatsionarnom teplovom rezhime [Thermal conductivity of silicate brick under non-stationaty conditions]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 2. Pp. 213–221. (rus)

9. Chernyshov A.V., Golikov D.O., Chernyshov V.N. SVCh-metod i sistema operativnogo kontrolya teplofizicheskikh kharakteristik stroitel'nykh materialov [SHF method and operating control system for thermal and physical properties of construction materials]. Vestnik vysshikh uchebnykh zavedenii Chernozem'ya [News of Higher Educational Institutions of the Chernozem Region]. 2010. No. 1. Pp. 17–23. (rus)

10. Kopanitsa N.O., Kovaleva M.A. Vliyanie vlazhnostnogo rezhima ekspluatatsii zdanii na teploizolyatsionnye svoistva torfodrevesnykh materialov [Moisture conditions of building servicing influencing heat-insulating properties of peat and wood materials]. Vestnik of Tomsk State University of Architecture and Building. 2011. No. 4. Pp. 161–166. (rus)

11. Kudyakov A.I., Kopanitsa N.O., Prishchepa I.A., Shan'gin S.N. Konstruktsionnoteploizolyatsionnye penobetony s termomodifitsirovannoi torfyanoi dobavkoi [Structural and heat-insulating foam concrete with thermally-modified additive]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 1. Pp. 172–178. (rus)

12. Kudyakov A.I., Steshenko A.B. Penobeton dispersno-armirovannyi teploizolyatsionnyi estestvennogo tverdeniya [Fiber-reinforced foam concrete of natural hardening]. Vestnik of Tomsk State University of Architecture and Building. 2014. No. 2. Pp. 127–134. (rus)

13. Kudyakov A.I., Apkar'yan A.S. Tekhnologiya granulirovannogo steklokristallicheskogo materiala dlya teploizolyatsii ograzhdayushchikh konstruktsii cherdachnogo perekrytiya [Glassceramic granulated technology for exterior wall heat insulation]. Vestnik of Tomsk State University of Architecture and Building. 2015. No. 1. Pp. 132–140. (rus)

14. Semukhin, B.S., Kaz'mina O.V., Kovalev G.I., Oparenkov Yu.V., Dushkina M.A. Opredelenie akusticheskikh svoistv penosteklokristallicheskikh materialov [Acoustic properties of foam glass-ceramic materials]. Izvestiya vysshikh uchebnykh zavedenii. Fizika [Russian Physics Journal]. 2013. V. 56. No. 7/2. Pp. 334–338. (rus)

15. Semukhin B.S., Votinov A.V., Kaz'mina O.V., Kovalev G.I. Vliyanie malykh dobavok dioksida tsirkoniya na akusticheskie svoistva penostekol'nykh materialov [The effect of small additives of zirconium dioxide on acoustic properties of foam glass]. Vestnik of Tomsk State University of Architecture and Building. 2014. No. 6. Pp. 123–132. (rus)


Review

For citations:


Votinov A.V., Semukhin B.S., Kovalev G.I. Acoustic Method of Measuring Thermal Conductivity of Construction Materials. Vestnik of Tomsk state university of architecture and building. 2016;(6):181-188. (In Russ.)

Views: 543


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)