Thermal Stability of Mixed Plasticizers, Residual Products of Forest Chemistry
https://doi.org/10.31675/1607-1859-2025-27-2-185-197
Abstract
This work studies and analyzes qualitative indicators of commodity and non-commodity products of forest chemistry in order to recommend them for using as modifiers of technological and operational properties of bitumen binders. This is one of many potential areas for a beneficial use of forest chemical residues. It is an example of technological conversion of timber processing products in the road construction industry.
Purpose: The aim of the work is to identify the possibility of using forest chemistry commercial products and their mixtures for further studying control for physical and mechanical parameters of road binders.
Methodology: A comparative analysis of thermal stability of both commodity and noncommodity products and their mixtures at different component ratio based on the thermogravimetric analysis.
Research findings: The potential use of residual products is confirmed for forest chemical processing, including their mixtures to correct technological and operating parameters of bituminous binders of various compositions.
About the Authors
I. A. KhalikinRussian Federation
Ilya A. Khalikin, Student
26, Yaroslavskoe Road, 129337, Moscow
I. M. Rozhkov
Russian Federation
Ivan M. Rozhkov
73A, Aviamotornaya Str., Build. 16, 111024, Moscow
L. Wang
Russian Federation
Linfan Wang, Student
5, 2nd Bauman Str., 105005, Moscow, 16
I. A. Klyuchnikov
Russian Federation
Ilya A. Klyuchnikov, Head of the Technical Research Department
4, Bochkova Str., 129085, Moscow
N. A. Lushnikov
Russian Federation
Nikolay A. Lushnikov, PhD, A/Professor, Russian University of Transport, 9, Obraztsov Str., 127055, Moscow; The National Research Moscow State University of Civil Engineering, 26, Yaroslavskoe Road, 129337, Moscow
D. Yu. Nebratenko
Russian Federation
Dmitry Yu. Nebratenko, PhD, A/Professor, Russian University of Transport, 9, Obraztsov Str., 127055, Moscow,; The National Research Moscow State University of Civil Engineering, 26, Yaroslavskoe Road, 129337, Moscow; D. Mendeleev University of Chemical Technology of Russia, 9, Miusskaya Sq., 125047, Moscow
References
1. Bystrov N.V. Standardization of Properties of Modified Bitumen. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroi-tel'nogo universiteta – Journal of Construction and Architecture. 2018; 20 (5): 198–203. (In Russian)
2. Gokhman L.M. Road Polymer Bitumen Concrete. Moscow: Ekon-Inform, 2017. 477 p. (In Russian)
3. Hunter R.N., Self A., Read J. The Shell Bitumen Handbook. 6th Ed., London: ICE Publishing. 2015. 485 p. DOI: 10.1680/tsbh.58378
4. Azari-Jafari H., Yahia A., Amor B. Life Cycle Assessment of Pavements: Reviewing Research Challenges and Opportunities. Journal of Cleaner Production. 2016; 1126: 2187–2197. DOI: 10.1016/j.jclepro.2015.09.080
5. Balaguera A., Carvajal G.I., Albertí J., Fullana-i-Palmer P. Life Cycle Assessment of Road Construction Alternative Materials: A Literature Review. Resources, Conservation & Recycling. 2018; 132 (24): 37–48. DOI: 10.1016/j.resconrec.2018.01.003
6. Simchuk E.N., Khapaev A.V., Rozhkov I.M. Modern Approaches to Modeling Bitumen Binder Aging in Laboratory Conditions. Dorogi i mosty. 2023; 48: 274–305. (In Russian)
7. EAPA, Asphalt in Figures 2020. Brussels, European Asphalt Pavement Association, 2021. 13 p.
8. Budris A. The EU restricts the supply of rubber and bitumen from Russia: what will be the consequences. Forbes. 01.03.2023. Available: www.forbes.ru/biznes/485436-es-ogranicivaetpostavki-kaucuka-i-bituma-iz-rossii-kakimi-budut-posledstvia (In Russian)
9. Ingrassia L.P., Lu X., Ferrotti G., Canestrari F. Renewable Materials in Bituminous Binders and Mixtures: Speculative Pretext or Reliable Opportunity? Resources, Conservation and Recycling. 2019; 144: 209–222.
10. Belova N.A., Strakhova N.A. Plasticization of Petroleum Bitumen with Spent and Mineral Synthetic. Vestnik Astrahanskogo inzhenerno-stroitel'nogo instituta. 2014; (1): 93–97. (In Russian)
11. Evdokimova N.G., Gryzina E.V., Alieva E.A., Gureev A.A. Preparation of Bitumen Production Raw Materials using Vacuum Residue of Visbreaking Unit. Neftegazovoe delo. 2011; (5): 323–335. (In Russian)
12. Mahssin Z.Y., et al. Converting Biomass into Bio-Asphalt – A Review. IOP Conference Series: Earth and Environmental Science. 2021; 19 (1). DOI: 10.1088/1755-1315/682/1/012066
13. Lahjiri F. Etude de l’impact physico-chimique des liants dits ”régénérants” sur la constructibilité (performance et durabilité) des enrobés recyclés. Physique. Français. Université Montpellier. 2020; 307 p.
14. Elahi Z., at al. Waste Cooking Oil as a Sustainable Bio Modifier for Asphalt Modification: A Review. Sustainability. 2021; 13: 11506. DOI: 10.3390/su132011506
15. Doshlov O.I., Speshilov E.G. Polymer-Bitumen Binder – a High-Tech Base for Asphalt of New Generation. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. 2013; (6): 140–142. (In Russian)
16. The Eurobitume life-cycle inventory for bitumen. Version 3.1 European Bitumen Association, Vol. 49. 2020.
17. Alvarez-Barajas R., et al. Bio and Waste-Based Binders with Hybrid Rubberized-Thermoplastic Characteristics for Roofing. Polymer Testing. 2024; 130: 108317: DOI: 10.1016/j.polymertesting.2023.108317
18. Zhou Y. Hydrothermal Conversion of Biomass to Fuels, Chemicals and Materials: A Review Holistically Connecting Product Properties and Marketable Applications. Science of The Total Environment. 2023; 34. DOI: 10.1016/j.scitotenv.2023.163920
19. Samieadel A., Schimmel K., Fini E.H. Comparative Life Cycle Assessment (LCA) of Bio-Modified Binder and Conventional Asphalt Binder. Clean Technologies and Environmental Policy. 2018; 20(1): 191–200.
20. Aziz M.M.A., Rahman M.T., Hainin M.R., Bakar W.A. An Overview on Alternative Binders for Flexible Pavement. Construction and Building Materials. 2015; 84: 315–319.
21. Zhang Z., Fang Y., Yang J., Li X. A Comprehensive Review of Bio-Oil, Bio-Binder and Bio-Asphalt Materials: Their Source, Composition, Preparation and Performance. Journal of Traffic and Transportation Engineering. 2022; 9 (2): 151–166.
22. Smid V.A., Dilman A.D. Fundamentals of Modern Organic Synthesis. Moscow: BINOM, 2009. 750 p. (In Russian)
23. Methodological recommendations for the use of formulated binders in road coatings. Moscow: Soyuzdornii, 1980. 16 p. (In Russian)
24. Varankina G.S., Rusakov D.S., Kozik P.S. Investigation of veneer bonding processes with phenolformaldehyde resin using intermediate products of sulfate-cellulose production. Sistemy. Metody. Tekhnologii. 2016; 2 (30): 120–127. DOI: 10.18324/2077-5415-2016-2-120-127 (In Russian)
25. Vladimirova T.M., Tretyakov S.I., Zhabin V.I., Koptelov A.E. Production and Processing of Tall Products. Arkhangelsk, 2008. 155 p. (In Russian)
26. Gurova E.V., Galdina V.D. Technical Properties of Petroleum Bitumen. Omsk, 2014. 40 p. (In Russian)
27. Kovalev Ya.N., Galuzo G.S., Zmachinsky A.E., Chistova T.A. Building Materials. Laboratory Practice. Minsk: Novoe znanie, 2013. 633 p. (In Russian)
Review
For citations:
Khalikin I.A., Rozhkov I.M., Wang L., Klyuchnikov I.A., Lushnikov N.A., Nebratenko D.Yu. Thermal Stability of Mixed Plasticizers, Residual Products of Forest Chemistry. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2025;27(2):185-197. (In Russ.) https://doi.org/10.31675/1607-1859-2025-27-2-185-197