Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Stress fields in steel bridges

https://doi.org/10.31675/1607-1859-2022-24-5-169-177

Abstract

   The paper deals with steel structures of road bridges. Multidimensional dynamic stress diagrams are suggested for steel road bridges. The analysis and quantitative conclusions are presented for the trouble-free operation of complex loaded structures. The paper describes the spatial distribution of mechanical stresses in buildings based on the obtained data on the operation under various loads and the statistical distribution of different points and zones of the object. Acoustic stress measurements are carried out during the bridge operation, and mathematical distributions are obtained for all measured points. It is shown that in determining the entire array of loads, a criterion can be identified for the trouble-free operation of bridge elements and the structure as a whole. Mathematical distributions are obtained or all measured points. The criterion parameter Χis introduced. It is found that the real three-dimensional distribution clearly describes the operation of various units and parts of steel road bridges. The findings confirm the proposed hypothesis about the possibility of such a description. It is noted that the real three-dimensional distribution well describes the work of various nodes, parts, parts of steel road bridges. The findings confirm our hypothesis about the possibility of such a description.

About the Author

B. S. Semukhin
Tomsk State University of Architecture and Building
Russian Federation

Boris S. Semukhin, DSc, Professor

634003

2, Solyanaya Sq.

Tomsk



References

1. Semukhin B. S. Dinamicheskie napryazheniya avtomobil'nykh mostovykh metallicheskikh sooruzhenii [Dynamic stress in automobile bridgeworks]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2018. No. 4. Pp. 170–176. (rus) URL: https://doi.org/10.31675/1607-1859-2018-20-4-170-176

2. Novak A. G., Trofimov V. A., Shvanova M. L. Matematicheskoe modelirovanie polei deformatsii i napryazhenii v diskovykh opticheskikh elementakh [Mathematical modeling of deformation and stress fields in disk optical elements]. Nauchno-tekhnicheskii vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta informatsionnykh tekhnologii, mekhaniki i optiki. 2011 No. 5 (75). Pp. 5–11. (rus)

3. Tretyakov E. M. Ostatochnye napryazheniya v kholodnodeformirovannykh tonkikh izdeliyakh i v tonkolistovom dressirovannom metalle [Residual stresses in cold-formed thin products and in thin-sheet trained metal]. Problemy mashinostroeniya i nadezhnosti mashin. 2008. No. 1. Pp. 49–61. (rus)

4. Kozlov V. A. Napryazhenno-deformirovannoe sostoyanie mnogosvyaznykh prizmaticheskikh konstruktivnykh elementov mostovykh sooruzhenii [Stress-strain state of multi-connected prismatic structural elements of bridge structures]. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura. 2011. No. 4. Pp. 110–117. (rus)

5. Syzrantsev V. N., Antonov M. D. Vosstanovlenie funktsii plotnosti raspredeleniya predel'nykh napryazhenii materiala gazoprovoda na osnove znachenii ikh kvantil'nykh otsenok [Restoration of distribution density function of limiting stresses in gas pipeline material based on their quantile estimates]. Gazovaya promyshlennost'. 2020. No.12 (810). Pp. 86–93. (rus)

6. Trusov P. V., Sokolov A. S. Dvukhurovnevaya uprugovyazkoplasticheskaya model': analiz vliyaniya raspredeleniya orientatsii kristallitov v otschetnoi konfiguratsii i slozhnosti nagruzheniya na povedenie polikristallicheskikh materialov [Two-level elastic-viscoplastic model: Analysis of orientation distribution of crystallites in the reference configuration and complexity of loading depending on polycrystalline material behavior]. Vychislitel'naya mekhanika sploshnykh sred. 2021. V. 14. No. 4. Pp. 398–412. (rus)

7. Kartopoltsev V. M., Borovikov A. A., Kartopoltsev A. V. Otsenka ostatochnogo resursa konstruktsii metallicheskikh mostov po kriteriyu treshchinoobrazovaniya [Residual life of metal bridge structures estimated by crack formation]. Vestnik of Tomsk State University of Architecture and Building. 2015. No. 2 (49). Pp. 176‒183. (rus)

8. Akimov B. G., Katsyn P. A., Gavrilenko S. M., Semukhin B. S., Andreev M. I., Shurygin Yu. A. Akusticheskii metod opredeleniya napryazhenii i sostoyanie metalla v mostovykh konstruktsiyakh [Acoustic method for stress state identification in metal bridge structures]. Nauka i tekhnika v dorozhnoi otrasli. 2001. No. 4. Pp. 22–26. (rus)

9. Katsyn P. A., Semukhin B. S., Akimov B. G., Chikov S. A. Primenenie ul'trazvukovykh metodov dlya otsenki napryazhennogo sostoyaniya mostovykh konstruktsii [Application of ultrasonic methods for assessing the stress state of bridge structures]. Vestnik of Tomsk State University of Architecture and Building. 2000. No. 2. Pp. 257–264. (rus)


Review

For citations:


Semukhin B.S. Stress fields in steel bridges. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2022;24(5):169-177. (In Russ.) https://doi.org/10.31675/1607-1859-2022-24-5-169-177

Views: 207


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)