Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Deformation modeling of bending element strength in MATLAB

https://doi.org/10.31675/1607-1859-2022-24-4-110-129

Abstract

   The paper presents the strength analysis of bending reinforced concrete elements in the Matlab support package. The versatility of the deformation model is its ability to conduct control tests, for example, verification of structural analysis at the design stage. Based on the standard stress-strain state diagrams of materials and iteration procedures, two independent nonlinear analyses are suggested. One of the main accepted conditions is that iteration procedures occur at the elastic behavior of the member. Iteration procedures determine the maximum member curvature and its deformation. The strength criterion is theoretically calculated deformation, which must not exceed permissible values specified in construction codes and regulations. Calculation algorithms are given in flowcharts. In conclusion, the results of experimental data are presented.

 

About the Authors

E. K. Opbul
Saint-Petersburg State University of Architecture and Civil Engineering
Russian Federation

Eres K. Opbul, PhD, Laboratory Head

190005

4, 2nd Krasnoarmeiskaya Str.

Saint-Petersburg



A.-Kh. B. Kaldar-ool
Tuvan State University
Russian Federation

Anai-Khaak B. Kaldar-ool, PhD, Senoir Lecturer

667000

36, Lenin Str.

Tyva Republic

Kyzyl

 



Le Quang Huy
Saint-Petersburg State University of Architecture and Civil Engineering
Russian Federation

Le Quang Huy, Research Assistant

190005

4, 2nd Krasnoarmeiskaya Str.

Saint-Petersburg



References

1. Michał D., Jacek Ś. Design aspects of the safe structuring of reinforcement in reinforced concrete bending beams. Procedia Engineering. 2017. V. 172. Pp. 211–217. DOI: 10.1016/j.proeng.2017.02.051

2. Herranz J. P., Maria H. S., Gutiérrez S., Riddell R. Optimal strut-and-tie models using full homogenization optimization method. ACI Structural Journal. 2012. V. 109. No. 5. Pp. 605–613. DOI: 10.14359/51684038

3. Garstecki A., Glema A., Ścigałło J. Optimal design of reinforced concrete beams and frames. Computer Assisted Mechanics and Engineering Sciences. 1996. V. 3. No. 3. Pp. 223−231.

4. Amin A., Gilbert R. I. Instantaneous crack width calculation for steel fiber-reinforced concrete flexural members. ACI Structural Journal. 2018. V. 115. No. 2. Pp. 535–542. DOI: 10.14359/51701116

5. Szeptyński P. Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams. Composite Structures. 2020. V. 214. Pp. 1–13. DOI: 10.1016/j.compstruct.2020.112088

6. Gao D. Y., Gu Z. Qiang, Wu C. Bending behavior and deflection prediction of high-strength SFRC beams under fatigue loading. Journal of Materials Research and Technology. 2020. V. 9. Pp. 6143−6159. DOI: 10.1016/j.jmrt.2020.04.017

7. Wu Z., Shi C., He W., Wu L. Effects of steel fiber content and shape on mechanical properties of ultra high-performance concrete. Construction and Building Materials. 2016. V. 103. Pp. 8–14. DOI: 10.1016/j.conbuildmat.2015.11.028

8. Yoo D. Y., Banthia N., Yoon Y. S. Impact resistance of reinforced ultra-high-performance concrete beams with different steel fibers. ACI Structural Journal. 2017. V. 114 No. 1. Pp. 113–124. DOI: 10.14359/51689430

9. Ulzurrun G. S. D., Zanuy C. Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers. Construction and Building Materials. 2017. V. 145. Pp. 166–182. DOI: 10.1016/j.conbuildmat.2017.04.005

10. Gali S., Subramaniam K. V. L. Investigation of the dilatant behavior of cracks in the shear response of steel fiber reinforced concrete beams. Engineering Structures. 2017. V. 152. Pp. 832–842. DOI: 10.1016/j.engstruct.2017.09.050

11. Li Q., Huang B., Xu S., Zhou B., Yu R. C. Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility. Cement and Concrete Research. 2016. V. 90. Pp. 174–183. DOI: 10.1016/j.cemconres.2016.09.019

12. Butean C., Heghes B. Cost Efficiency of a two layer reinforced concrete beam. Procedia Manufacturing. 2020. V. 46. Pp. 103–109. DOI: 10.1016/j.promfg.2020.03.016

13. Głowacki M., Kowalski R. An experimental approach to the estimation of stiffness changes in RC elements exposed to bending and high temperature. Engineering Structures. 2020. V. 217. Pp. 1–15. DOI: 10.1016/j.engstruct.2020.110720

14. Zhu H., Cheng S., Gao D., Neaz S.M., Li C. Flexural behavior of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars. Construction and Building Materials. 2018. V. 161. Pp. 587–597. DOI: 10.1016/j.conbuildmat.2017.12.003

15. Song A., Wan S., Jiang Z., Xu J. Residual deflection analysis in negative moment regions of steel-concrete composite beams under fatigue loading. Construction and Building Materials. 2018. V. 158. Pp. 50–60. DOI: 10.1016/j.conbuildmat.2017.09.075

16. Fava G., Carvelli V., Pisani M. A. Remarks on bond of GFRP rebars and concrete. Composites Part B: Engineering. 2016. V. 93. Pp. 210–220. DOI: 10.1016/j.compositesb.2016.03.012

17. Aulia T. B., Rinaldi. Bending capacity analysis of high-strength reinforced concrete beams using environmentally friendly synthetic fiber composites. Procedia Engineering. 2015. V. 125. Pp. 1121–1128. DOI: 10.1016/j.proeng.2015.11.136

18. Rabi M., Cashell K. A., Shamass R. Flexural analysis and design of stainless steel reinforced concrete beams. Engineering Structures. 2019. V. 198. Pp. 1–13. DOI: 10.1016/j.engstruct.2019.109432

19. Cramer S. D., Covino B. S., Bullard S. J., Holcomb G. R., Russell J. H., Nelson F. J., Laylor H. M., Soltesz S. M. Corrosion prevention and remediation strategies for reinforced concrete coastal bridges. Cement and Concrete Composites. 2002. V. 24. Pp. 101–117. DOI: 10.1016/S0958-9465(01)00031-2

20. Briz E., Biezma M. V., Bastidas D. M. Stress corrosion cracking of new 2001 lean-duplex stain-less steel reinforcements in chloride contained concrete pore solution: An electrochemical study. Construction and Building Materials. 2018. V. 192. Pp. 1–8. DOI: 10.1016/j.conbuildmat.2018.10.108

21. Yadollahi A., Shamsaei N., Thompson S. M., Elwany A., Bian L. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. International Journal of Fatigue. 2017. V. 94. Pp. 218–235. DOI: 10.1016/j.ijfatigue.2016.03.014

22. Hou Z., Chen S., Sun Q., Wei X., Lv W. Experimental research on fatigue characteristics of X12Cr13 stainless steel. Journal of Materials Research and Technology. 2020. V. 9. Pp. 3230−3240. DOI: 10.1016/j.jmrt.2020.01.070

23. Opbul E. K., Dmitriev D. A., Vedernikova A. A. Calculation of bending of steel-fiber-reinforced concrete members by a nonlinear deformation model with the use of iteration procedures. Mechanics of Composite Materials. 2018. V. 54 No. 5. Pp. 1–24. DOI: 10.1007/s11029-018-9769-x

24. Opbul E. K., Ondar E. E., Kaldar-ool A.-Kh.B. Raschet prochnosti fibrozhelezobetonnykh izgibaemykh elementov s ispol'zovaniem trekhlineinoi diagrammy deformirovaniya rastyanutoi zony [Strength analysis of fiber-reinforced concrete bending elements using three-line stress-strain diagram of tension region]. Nauchnoe obozrenie. 2016. No. 14. Pp. 100−106. (rus)

25. Opbul E. K., Ondar E. E., Kaldar-ool A.-Kh.B. Deformatsionnye modeli rascheta prochnosti izgibaemykh zhelezobetonnykh elementov [Deformation models of strength of bending steel elements]. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2020. No. 1 (58). Pp. 6−22. (rus)

26. Opbul E. K., Kaldar-ool A.-Kh. B. Prakticheskoe primenenie nelineinoi deformatsionnoi modeli v raschete korotkikh zhelezobetonnykh elementov, nakhodyashchikhsya v kosom vnetsentrennom szhatii [Application of nonlinear deformation model for strength analysis of short reinforced concrete elements under oblique eccentrical compression]. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2022. No. 1 (90). Pp. 34−48. (rus)

27. Munshi J. A. Design of prestressed flexural sections by the unified design approach. PCI Journal. 1999. V. 46. Pp. 76–87. DOI:10.15554/pcij.09011999.72.81

28. Orozco C. E. Strain limits vs. reinforcement ratio limits − A collection of new and old formulas for the design of reinforced concrete sections. Case Studies in Structural Engineering. 2015. V. 4. Pp. 1–13. DOI: 10.1016/j.csse.2015.05.001

29. ACI 318. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-11). 2011. ISBN:9780870312649.

30. Panfilov D. A., Pischulev A. A., Romanchkov V. V. The methodology for calculating deflections of statically indeterminate reinforced concrete beams (based on nonlinear deformation model). Procedia Engineering. 2016. V. 153. Pp. 531–536. DOI: 10.1016/j.proeng.2016.08.183

31. Gilbert R. I. The serviceability limit states in reinforced concrete design. Procedia Engineering. 2011. V. 14. Pp. 385–395. DOI:10.1016/j.proeng.2011.07.048

32. Wróblewski R., Ignatowicz R., Gierczak J. Influence of shrinkage and temperature on a composite pretensioned - Reinforced concrete structure. Procedia Engineering. 2017. V. 193. Pp. 96–103. DOI: 10.1016/j.proeng.2017.06.191


Review

For citations:


Opbul E.K., Kaldar-ool A.B., Huy L.Q. Deformation modeling of bending element strength in MATLAB. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2022;24(4):110-129. (In Russ.) https://doi.org/10.31675/1607-1859-2022-24-4-110-129

Views: 323


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)