Deformation modeling of bending element strength in MATLAB
https://doi.org/10.31675/1607-1859-2022-24-4-110-129
Abstract
The paper presents the strength analysis of bending reinforced concrete elements in the Matlab support package. The versatility of the deformation model is its ability to conduct control tests, for example, verification of structural analysis at the design stage. Based on the standard stress-strain state diagrams of materials and iteration procedures, two independent nonlinear analyses are suggested. One of the main accepted conditions is that iteration procedures occur at the elastic behavior of the member. Iteration procedures determine the maximum member curvature and its deformation. The strength criterion is theoretically calculated deformation, which must not exceed permissible values specified in construction codes and regulations. Calculation algorithms are given in flowcharts. In conclusion, the results of experimental data are presented.
About the Authors
E. K. OpbulRussian Federation
Eres K. Opbul, PhD, Laboratory Head
190005
4, 2nd Krasnoarmeiskaya Str.
Saint-Petersburg
A.-Kh. B. Kaldar-ool
Russian Federation
Anai-Khaak B. Kaldar-ool, PhD, Senoir Lecturer
667000
36, Lenin Str.
Tyva Republic
Kyzyl
Le Quang Huy
Russian Federation
Le Quang Huy, Research Assistant
190005
4, 2nd Krasnoarmeiskaya Str.
Saint-Petersburg
References
1. Michał D., Jacek Ś. Design aspects of the safe structuring of reinforcement in reinforced concrete bending beams. Procedia Engineering. 2017. V. 172. Pp. 211–217. DOI: 10.1016/j.proeng.2017.02.051
2. Herranz J. P., Maria H. S., Gutiérrez S., Riddell R. Optimal strut-and-tie models using full homogenization optimization method. ACI Structural Journal. 2012. V. 109. No. 5. Pp. 605–613. DOI: 10.14359/51684038
3. Garstecki A., Glema A., Ścigałło J. Optimal design of reinforced concrete beams and frames. Computer Assisted Mechanics and Engineering Sciences. 1996. V. 3. No. 3. Pp. 223−231.
4. Amin A., Gilbert R. I. Instantaneous crack width calculation for steel fiber-reinforced concrete flexural members. ACI Structural Journal. 2018. V. 115. No. 2. Pp. 535–542. DOI: 10.14359/51701116
5. Szeptyński P. Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams. Composite Structures. 2020. V. 214. Pp. 1–13. DOI: 10.1016/j.compstruct.2020.112088
6. Gao D. Y., Gu Z. Qiang, Wu C. Bending behavior and deflection prediction of high-strength SFRC beams under fatigue loading. Journal of Materials Research and Technology. 2020. V. 9. Pp. 6143−6159. DOI: 10.1016/j.jmrt.2020.04.017
7. Wu Z., Shi C., He W., Wu L. Effects of steel fiber content and shape on mechanical properties of ultra high-performance concrete. Construction and Building Materials. 2016. V. 103. Pp. 8–14. DOI: 10.1016/j.conbuildmat.2015.11.028
8. Yoo D. Y., Banthia N., Yoon Y. S. Impact resistance of reinforced ultra-high-performance concrete beams with different steel fibers. ACI Structural Journal. 2017. V. 114 No. 1. Pp. 113–124. DOI: 10.14359/51689430
9. Ulzurrun G. S. D., Zanuy C. Enhancement of impact performance of reinforced concrete beams without stirrups by adding steel fibers. Construction and Building Materials. 2017. V. 145. Pp. 166–182. DOI: 10.1016/j.conbuildmat.2017.04.005
10. Gali S., Subramaniam K. V. L. Investigation of the dilatant behavior of cracks in the shear response of steel fiber reinforced concrete beams. Engineering Structures. 2017. V. 152. Pp. 832–842. DOI: 10.1016/j.engstruct.2017.09.050
11. Li Q., Huang B., Xu S., Zhou B., Yu R. C. Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility. Cement and Concrete Research. 2016. V. 90. Pp. 174–183. DOI: 10.1016/j.cemconres.2016.09.019
12. Butean C., Heghes B. Cost Efficiency of a two layer reinforced concrete beam. Procedia Manufacturing. 2020. V. 46. Pp. 103–109. DOI: 10.1016/j.promfg.2020.03.016
13. Głowacki M., Kowalski R. An experimental approach to the estimation of stiffness changes in RC elements exposed to bending and high temperature. Engineering Structures. 2020. V. 217. Pp. 1–15. DOI: 10.1016/j.engstruct.2020.110720
14. Zhu H., Cheng S., Gao D., Neaz S.M., Li C. Flexural behavior of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars. Construction and Building Materials. 2018. V. 161. Pp. 587–597. DOI: 10.1016/j.conbuildmat.2017.12.003
15. Song A., Wan S., Jiang Z., Xu J. Residual deflection analysis in negative moment regions of steel-concrete composite beams under fatigue loading. Construction and Building Materials. 2018. V. 158. Pp. 50–60. DOI: 10.1016/j.conbuildmat.2017.09.075
16. Fava G., Carvelli V., Pisani M. A. Remarks on bond of GFRP rebars and concrete. Composites Part B: Engineering. 2016. V. 93. Pp. 210–220. DOI: 10.1016/j.compositesb.2016.03.012
17. Aulia T. B., Rinaldi. Bending capacity analysis of high-strength reinforced concrete beams using environmentally friendly synthetic fiber composites. Procedia Engineering. 2015. V. 125. Pp. 1121–1128. DOI: 10.1016/j.proeng.2015.11.136
18. Rabi M., Cashell K. A., Shamass R. Flexural analysis and design of stainless steel reinforced concrete beams. Engineering Structures. 2019. V. 198. Pp. 1–13. DOI: 10.1016/j.engstruct.2019.109432
19. Cramer S. D., Covino B. S., Bullard S. J., Holcomb G. R., Russell J. H., Nelson F. J., Laylor H. M., Soltesz S. M. Corrosion prevention and remediation strategies for reinforced concrete coastal bridges. Cement and Concrete Composites. 2002. V. 24. Pp. 101–117. DOI: 10.1016/S0958-9465(01)00031-2
20. Briz E., Biezma M. V., Bastidas D. M. Stress corrosion cracking of new 2001 lean-duplex stain-less steel reinforcements in chloride contained concrete pore solution: An electrochemical study. Construction and Building Materials. 2018. V. 192. Pp. 1–8. DOI: 10.1016/j.conbuildmat.2018.10.108
21. Yadollahi A., Shamsaei N., Thompson S. M., Elwany A., Bian L. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. International Journal of Fatigue. 2017. V. 94. Pp. 218–235. DOI: 10.1016/j.ijfatigue.2016.03.014
22. Hou Z., Chen S., Sun Q., Wei X., Lv W. Experimental research on fatigue characteristics of X12Cr13 stainless steel. Journal of Materials Research and Technology. 2020. V. 9. Pp. 3230−3240. DOI: 10.1016/j.jmrt.2020.01.070
23. Opbul E. K., Dmitriev D. A., Vedernikova A. A. Calculation of bending of steel-fiber-reinforced concrete members by a nonlinear deformation model with the use of iteration procedures. Mechanics of Composite Materials. 2018. V. 54 No. 5. Pp. 1–24. DOI: 10.1007/s11029-018-9769-x
24. Opbul E. K., Ondar E. E., Kaldar-ool A.-Kh.B. Raschet prochnosti fibrozhelezobetonnykh izgibaemykh elementov s ispol'zovaniem trekhlineinoi diagrammy deformirovaniya rastyanutoi zony [Strength analysis of fiber-reinforced concrete bending elements using three-line stress-strain diagram of tension region]. Nauchnoe obozrenie. 2016. No. 14. Pp. 100−106. (rus)
25. Opbul E. K., Ondar E. E., Kaldar-ool A.-Kh.B. Deformatsionnye modeli rascheta prochnosti izgibaemykh zhelezobetonnykh elementov [Deformation models of strength of bending steel elements]. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2020. No. 1 (58). Pp. 6−22. (rus)
26. Opbul E. K., Kaldar-ool A.-Kh. B. Prakticheskoe primenenie nelineinoi deformatsionnoi modeli v raschete korotkikh zhelezobetonnykh elementov, nakhodyashchikhsya v kosom vnetsentrennom szhatii [Application of nonlinear deformation model for strength analysis of short reinforced concrete elements under oblique eccentrical compression]. Vestnik Tuvinskogo gosudarstvennogo universiteta. Tekhnicheskie i fiziko-matematicheskie nauki. 2022. No. 1 (90). Pp. 34−48. (rus)
27. Munshi J. A. Design of prestressed flexural sections by the unified design approach. PCI Journal. 1999. V. 46. Pp. 76–87. DOI:10.15554/pcij.09011999.72.81
28. Orozco C. E. Strain limits vs. reinforcement ratio limits − A collection of new and old formulas for the design of reinforced concrete sections. Case Studies in Structural Engineering. 2015. V. 4. Pp. 1–13. DOI: 10.1016/j.csse.2015.05.001
29. ACI 318. Building Code Requirements for Structural Concrete and Commentary (ACI 318M-11). 2011. ISBN:9780870312649.
30. Panfilov D. A., Pischulev A. A., Romanchkov V. V. The methodology for calculating deflections of statically indeterminate reinforced concrete beams (based on nonlinear deformation model). Procedia Engineering. 2016. V. 153. Pp. 531–536. DOI: 10.1016/j.proeng.2016.08.183
31. Gilbert R. I. The serviceability limit states in reinforced concrete design. Procedia Engineering. 2011. V. 14. Pp. 385–395. DOI:10.1016/j.proeng.2011.07.048
32. Wróblewski R., Ignatowicz R., Gierczak J. Influence of shrinkage and temperature on a composite pretensioned - Reinforced concrete structure. Procedia Engineering. 2017. V. 193. Pp. 96–103. DOI: 10.1016/j.proeng.2017.06.191
Review
For citations:
Opbul E.K., Kaldar-ool A.B., Huy L.Q. Deformation modeling of bending element strength in MATLAB. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2022;24(4):110-129. (In Russ.) https://doi.org/10.31675/1607-1859-2022-24-4-110-129