Simulation of heat pump operation. problems and prospects
https://doi.org/10.31675/1607-1859-2022-24-2-125-137
Abstract
The article presents the calculation and modeling of heat and mass transfer that determines the operating modes of heat pumps. The physical and mathematical simulation aims at the operation of geothermal heat pumps. It is shown that numerical simulation of the main physical mechanisms affecting the efficiency of the ground heat collection are little used for practical calculations in design of heat pump systems. The use of numerical simulation results is limited by specific geographical and climatic conditions that do not allow generalizing numerical, full-scale or laboratory experiments. Especially noticeable is a lack of complete design methods of ground heat collection systems in northern regions. A promising direction of future research is identified to obtain the data on the effect of heat and moisture transfer in the soil on the performance of geothermal heat pumps.
About the Authors
A. V. TolstykhRussian Federation
Aleksandr V. Tolstykh - PhD, A/Professor.
2, Solyanaya Sq., 634003, Tomsk
Yu. N. Doroshenko
Russian Federation
Yuliya N. Doroshenko - PhD, A/Professor.
2, Solyanaya Sq., 634003, Tomsk
V. V. Penyavsky
Russian Federation
Vitaly V. Penyavsky - PhD, A/Professor.
2, Solyanaya Sq., 634003, Tomsk
I. O. Kнalimov
Russian Federation
Ilya О. Halimov - Research Assistant.
2, Solyanaya Sq., 634003, Tomsk
References
1. Vasil'ev G.P. Geotermal'nye teplonasosnye sistemy teplosnabzheniya i effektivnost' ikh primeneniya v klimaticheskikh usloviyakh Rossii [Geothermal heat pump systems of heat supply and efficiency of their application in the climatic conditions of Russia]. AVOK. 2017. No. 5. Pp. 58–68. (rus)
2. Vasil'ev G.P. Primenenie GTST v Rossii [Application of MCT in Russia]. Energiya. 2009. No. 7. Pp. 22–29. (rus)
3. Moidinov D.R., Stepanova E.G., Chernomorova D.A. Raschet i modelirovanie raboty absorbtsionnykh teplovykh nasosov dlya sistemy teplosnabzheniya [Calculation and simulation of absorption heat pump operation for heat supply system]. In: Tekhnicheskie i tekhnologicheskie sistemy. Materialy dvenadtsatoi Mezhdunarodnoi nauchnoi konferentsii (Proc.12th Int. Sci. Conf. ‘Engineering and Process Systems’). Krasnodar: Izdatel'skii Dom − Yug, 2021. Pp. 170−173. (rus)
4. Edelev A.V., Zorkal'tsev V.I., Marinchenko A.Yu. Modelirovanie protsessa teplosnabzheniya teplovymi nasosami zdanii na poberezh'e ozera Baikal [Heat supply simulation in buildings of nearby Lake Baikal]. Sistemnyi analiz i matematicheskoe modelirovanie. 2020. V. 2. No. 2. Pp. 5–17. (rus)
5. Psarov S.A., Shumilin E.V. Modelirovanie raboty geotermal'nogo teplovogo nasosa s vosstanovleniem teploty grunta v teplyi period [Simulation of geothermal heat pump operation with soil heat recovery in a warm period]. Mezhdunarodnyi nauchno-issledovatel'skii zhurnal. 2021. No. 1–1 (103). Pp. 111–117. (rus)
6. Stefanovich S.Yu., Bondarenko A.V. Teplotekhnicheskoe modelirovanie vertikal'nykh gruntovykh teploobmennikov teplovykh nasosov metodom konechnykh raznostei [Thermotechnical modeling of vertical soil heat pump exchangers by the finite difference method]. Sovremennye nauchnye issledovaniya i innovatsii. 2018. No. 6 (86). Pp. 15. (rus)
7. Atam E., Helsen L. Ground-coupled heat pumps: Part 1 – Literature review and research challenges in modeling and optimal control. Renewable and Sustainable Energy Reviews. 2015. Pp. 1–15. DOI: 10.1016/j.rser.2015.10.007
8. Min Li. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Applied Energy. 2015. No. 151. Pp. 178–191. DOI: 10.1016/j.apenergy.2015.04.070
9. Eskilson P. Thermal analysis of heat extraction boreholes. PhD Thesis. University of Lund, Sweden, 1987. 264 р.
10. Filatov S.O., Volodin V.I. Chislennoe modelirovanie utilizatora teploty grunta s teplopriemnikom [Numerical modeling of soil heat utilizer with heat receiver]. Trudy Belorusskogo gosudarstvennogo tekhnologicheskogo universiteta. 2012. No. 3. Pp. 179–183. (rus)
11. Filatov S.O. Teplovoi raschet vertikal'nykh gruntovykh teploobmennikov [Thermal analysis of vertical ground heat exchangers]. Izvestiya vysshikh uchebnykh zavedenii i energeticheskikh ob"edinenii SNG. 2013. No. 4. Pp. 81–91. (rus)
12. Eskilson P., Claesson J. Simulation model of thermally interacting heat extraction boreholes. Numerical Heat Transfer. 1988. V. 13. Pp. 149–165.
13. Vasil'ev G.P. Teplokhladosnabzhenie zdanii i sooruzhenii s ispol'zovaniem nizkopotentsial'noi teplovoi energii poverkhnostnykh sloev Zemli [Heat and cold supply of buildings with lowpotential thermal energy of the Earth surface layers]. Moscow: Granitsa, 2006. 176 р. (rus)
14. Kostikov A.O., Kharlampidi D.Kh. Vliyanie teplovogo sostoyaniya grunta na effektivnost' teplonasosnoi ustanovki s gruntovym teploobmennikom [The influence of soil thermal state on heat pump with soil heat exchanger]. Energetika: ekonomika, tekhnologgii, ekologiya. 2009. No. 1. Pp. 32–40. (rus)
15. Matsevityi Yu.M., Tarasova V.A., Kharlampidi D.Kh. Vosstanovlenie teplovogo po-tentsiala grunta za schet vybora ratsional'nykh rezhimov raboty teplonasosnoi sistemy [Ground thermal potential recovery by selecting operation modes of heat pump system]. In: Tezisy dokladov i soobshchenii 14 Minskogo mezhdunarodnogo foruma po teplo- i massoobmenu (Proc. Minsk 14th Int. Forum on Heat and Mass Transfer). 2012. V. 1. Pp. 736–739. (rus)
16. Basok B.I., Davydenko B.V., Teslya A.I., Lunina A.A. Chislennoe modelirovanie teploperenosa v gruntovom massive pri rabote gorizontal'nogo gruntovogo kollektora [Numerical modeling of heat transfer in soil during operation of a horizontal soil collector]. Teplovye nasosy. Available: http://esco.co.ua/journal/2012_6/art373.pdf (accessed February 15, 2022). (rus)
17. Bashurov V.V., Vaganova N.A., Filimonov M.Yu. Chislennoe modelirovanie protsessov teploobmena v grunte s uchetom fil'tratsii zhidkosti [Numerical modeling of heat transfer processes in soil with liquid filtration]. Vychislitel'nye tekhnologii. 2011. V. 16, No. 4. Pp. 3–18. (rus)
18. Zhihua Zhou, Zhiming Zhang, Guanyi Chen, Jian Zuo, Pan Xu, Chong Meng, Zhun Yu. Feasibility of ground coupled heat pumps in office buildings: A China study. Applied Energy. 2015. No. 162. Pp. 266–277. DOI: 10.1016/j.apenergy.2015.10.055
19. Zhijian Liu, Wei Xu, Cheng Qian, Xi Chen, Guangya Jin. Investigation on the feasibility and performance of ground source heat pump (GSHP) in three cities in cold climate zone, China. Renewable Energy. 2015. No. 84. Pp. 89–96. DOI: 10.1016/j.renene.2015.06.019
20. Emmi Giuseppe, Angelo Zarrella, Michele De Carli, Antonio Galgaro. An analysis of solar assisted ground source heat pumps in cold climates. Energy Conversion and Management. 2015. No. 106. Pp. 660–675. DOI: 10.1016/j.enconman.2015.10.016
21. Huifang Liu, Yiqiang Jiang, Yang Yao. The field test and optimization of a solar assisted heat pump system for space heating in extremely cold area. Sustainable Cities and Society. 2015. No. 13. Pp. 97–104. DOI: 10.1016/j.scs.2014.05.002
22. Caglar Ahmet, Cemil Yamalı. Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating. Energy and Buildings. 2012. No. 54. Pp. 22–28. DOI: 10.1016/j.enbuild.2012.08.003 (rus)
23. Xiao Wang, Maoyu Zheng, Wenyong Zhang, Shu Zhang, Tao Yang. Experimental study of a solar-assisted ground-coupled heat pump system with solar seasonal thermal storage in severe cold areas. Energy and Buildings. 2010. No. 42. Pp. 2104–2110, DOI: 10.1016/j.enbuild.2010.06.022 (rus)
24. Weibo Yang, Lei Kong, Yongping Chen. Numerical evaluation on the effects of soil freezing on underground temperature variations of soil around ground heat exchangers. Applied Thermal Engineering. 2015. No. 75. Pp. 259–269, DOI: 10.1016/j.applthermaleng.2014.09.049
25. Tsytovich N.A. Mekhanika merzlykh gruntov [Frozen soil mechanics]. Moscow: Vysshaya shkola, 1973. 448 p. (rus)
26. Kronik Ya.A., Demin I.I. Raschety temperaturnykh polei i napryazhenno-deformirovannogo sostoyaniya gruntovykh sooruzhenii metodom konechnykh elementov [Finite element modeling of temperature fields and stress-strain state of soil structures]. Moscow: MISI, 1982. 102 р. (rus)
27. Kiselev M.F. Teoriya szhimaemosti ottaivayushchikh gruntov pod davleniem [Theory of compressibility of thawing soils under pressure]. Leningrad: Stroiizdat, 1978. 176 р. (rus)
28. Kudryavtsev S.A., Kazharskii A.V. Chislennoe modelirovanie protsessa migratsii vlagi v zavisimosti ot skorosti promerzaniya gruntov [Numerical modeling of moisture migration depending on soil freezing rate]. Inzhenerno-stroitel'nyi zhurnal. 2012. No. 4. Pp. 33–38. (rus)
29. Kudryavtsev S.A. Raschety protsessa promerzaniya i ottaivaniya po programme “Termoground”. [“Thermoground” program for freezing and thawing process calculations]. Rekonstruktsiya gorodov i geotekhnicheskoe stroitel'stvo. Available: www.georec.spb.ru/journals/08/files/pdf/0508007.pdf (accessed February 22, 2022). (rus)
30. Veselov V.V., Belyakov V.A. Teploizolirovannyi malozaglublennyi fundament: rabota v sezonno-promerzayushchikh gruntakh i praktika teplovogo rascheta [Heat-insulated low-depth foundation: Works in seasonal freezing soils and thermal calculation]. Inzhenerno-stroitel'nyi zhurnal. 2011. No. 8. Pp. 13–18. (rus)
31. Kovalenko V.I. Primenenie programmy Frost 3d dlya trekhmernogo modelirovaniya raspredeleniya temperatur v vechnomerzlom grunte pri ego termostabilizatsii [Frost 3D program for three-dimensional modeling of temperature distribution in permafrost soil during its thermal stabilization]. Zhurnal neftegazovogo stroitel'stva. 2013. No. 3. Pp. 14–18. (rus)
32. Vitel М., Rouabhi A., Tijani M., Guеrin F. Modeling heat transfer between a freeze pipe and the surrounding ground during artificial ground freezing activities. Computers and Geotechnics. 2015. No. 63. Pp. 99–111, DOI: 10.1016/j.compgeo.2014.08.004
Review
For citations:
Tolstykh A.V., Doroshenko Yu.N., Penyavsky V.V., Kнalimov I.O. Simulation of heat pump operation. problems and prospects. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2022;24(2):125-137. (In Russ.) https://doi.org/10.31675/1607-1859-2022-24-2-125-137