Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Heat-insulating non-autoclaved lightweight concrete with hydraulic ash removal

https://doi.org/10.31675/1607-1859-2021-23-5-105-117

Abstract

The paper presents research results of natural hardening of lightweight concrete with aluminosilicate ash generated by the Thermal Power Plant in Seversk (Tomsk, Russia). Today, it is necessary to develop effective building materials with improved operational properties by using local natural and technogenic raw materials. The acceleration of the structure formation and required plasticity for a transportation and molding of lightweight concrete products are achieved by using finely dispersed aluminosilicate minerals and plasticizers for natural hardening of lightweight concrete. The concrete mixture and lightweight concrete are studied in the TSUAB laboratory accredited in accordance with national standard requirements. The optimum content of hydraulic ash in lightweight concrete mixture is 10–15 wt.%. the compressive strength lightweight concrete with D400 density increases by 26−66 % after 28-day curing, when adding the Relamix T-2 plasticizer and ash from the Thermal Power Plant. Its water absorption reduces by 30 wt.% with insignificant decrease in thermal conductivity. Technological solutions are developed for the production of lightweight concrete with ash ash and slag materials for wall structures in individual housing construction.

About the Authors

A. I. Kudyakov
Tomsk State University of Architecture and Building
Russian Federation

Aleksandr I. Kudyakov, DSc, Professor

2, Solynaya Sq., 634003, Tomsk



A. B. Steshenko
Tomsk State University of Architecture and Building
Russian Federation

Aleksey B. Steshenko, PhD

2, Solynaya Sq., 634003, Tomsk



N. P. Dushenin
Tomsk State University of Architecture and Building
Russian Federation

Nikolai P. Dushenin, PhD

2, Solynaya Sq., 634003, Tomsk



N. E. Ryabtseva
Tomsk State University of Architecture and Building
Russian Federation

Natal'ya E. Ryabtseva, Student

2, Solynaya Sq., 634003, Tomsk



References

1. Dien V.K., Ly N.C., Lam T.V., Bazhenova S.I. Foamed concrete containing various amounts of organic-mineral additives. IOP Conference Series: Journal of Physics: Conference Series. 2020. V. 1425. 012199. DOI:10.1088/1742-6596/1425/1/012199

2. Zuhua Z., John L., Provis A.R., Hao W. Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials. 2014. V. 56. Pp. 113–127.

3. Girnienė I., Laukaitis A. The effect of the hardening conditions on foam cement concrete strength and phase composition of new formations. Materials Science. 2002. No. 1. Pp. 77–82.

4. Semenov A.A. Stroitel'stvo i promyshlennost' stroitel'nykh materialov v 2017 g. Kratkosrochnyi prognoz [Construction and building material industry in 2017. Short-term forecast]. Stroitel'nye materialy. No. 4. Pp. 4‒8. (rus)

5. Steshenko A.B., Kudyakov A.I. Penobeton s plastifitsiruyushchimi i mikroarmiruyushchimi dobavkami [Lightweight concrete with pasticizing and micro-reinforcing additives]. ALITinform: Tsement. Beton. Sukhie smesi. 2018. No. 3 (52). Pp. 26‒40. (rus)

6. Popov A.L., Strokova V.V. Fibropenobeton avtoklavnogo tverdeniya s ispol'zovanie kompozitsionnogo vyazhushchego [Autoclaved fiber concrete with composite binder]. Stroitel'nye materialy. 2019. No. 5. Pp. 38‒44. DOI: 10.31659/0585-430X-2019-770-5-38-44 (rus)

7. Pimenova L.N., Kudyakov A.I. Penobeton, modifitsirovannyi silikagelem [Lightweight concrete modified with silica gel]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 2. Pp. 229–233. (rus)

8. Kudyakov A.I. (Ed.), Belykh S.A., Lebedeva T.A. Stenovye teploizolyatsionnye materialy i izdeliya iz napolnennykh penostekol'nykh kompozitsii [Wall thermal insulation materials and products from filled foam glass compositions]. Tomsk: TSUAB, 2016. 192 p. (rus)

9. Namsone E., Šahmenko G., Korjakins A., Namsone E. Influence of porous aggregate on the properties of foamed concrete. Construction Science. 2016. No 19. Pp. 13-20. DOI: 10.1515/cons-2016-0006

10. Perfilov V.A., Kotlyarevskaya A.V., Kanavets U.V. Issledovanie vliyaniya nanouglerodnykh dobavok i polykh steklyannykh mikrosfer na svoistva penofibrobetonov [Nano-carbon additive and hollow glass microsphere effect on lightweight concrete properties]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: stroitel'stvo i arkhitektura. 2016. No. 44-2. Pp. 119‒124. (rus)

11. Savenkov A.I., Baranova A.A. Penobeton teploizolyatsionnyi s primeneniem plastifikatorov novogo pokoleniya [Heat-insulating foam concrete with new-generation plasticizers]. Vestnik VSGUTU. 2014. No. 3. Pp. 70‒73. (rus)

12. Morgun V.N., Morgun L.V. Obosnovanie odnogo iz metodov sovershenstvovaniya struktury [Method of improving the foam concrete structure]. Stroitel'nye materialy. 2018. No. 5. Pp. 24‒16. (rus)

13. Steshenko A.B., Kudyakov A.I. Issledovanie vliyaniya kristallicheskogo glioksalya na svoistva tsementnogo penobetona estestvennogo tverdeniya [The influence of crystalline glyoxal on properties of air hardened cement-based foam concrete]. Pis'ma o materialakh. 2015. V. 5. No. 1 (17). Pp. 3‒6. 14 (rus)

14. Steshenko A.B., Kudyakov A.I., Konusheva V.V., Syrkin O.O. Structure formation control of foam concrete. AIP Conference Proceedings. 2017. V. 1800. Pp. 1‒8. DOI: 10.1063/1.4973017

15. Kudyakov A.I., Steshenko A.B., Simakova A.S., Latypov A.D. Мethods of introduction of glyoxalcontaining additives into foam concrete mixture. IOP Conference Series: Materials Science and Engineering. 2019. 012037. DOI: 10.1088/1757-899X/597/1/012037

16. Markov A.Yu., Strokova V.V., Markova I.Yu. Otsenka svoistv toplivnykh zol kak komponentov kompozitsionnykh materialov [The properties of fuel ashes as components of composite materials]. Stroitel'nye materialy. 2019. No. 4. Pp. 77‒84. (rus)

17. Kudyakov A.I., Kopanitsa N.O., Prishchepa I.A., Shan'gin S.N. Konstruktsionno-teploizolyatsionnye penobetony s termomodifitsirovannoi torfyanoi dobavkoi [Constructional and heatinsulating foam concretes with thermally modified peat additive]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 1 (38). Pp. 172‒177. (rus)

18. Yakovlev G., Keriene J., Gailius A., Girniene I. Cement based foam concrete reinforced by carbon nanotubes. Materials Science. 2006. V. 12. No. 2. Pp. 147–151.

19. Mashkin N.A., Kudyakov A.I., Barten'eva E.A. Neavtoklavnyi penobeton, dispersno-armirovannyi mineral'nymi i voloknistymi dobavkami [Nonautoclaved dispersion-reinforced foam concrete with mineral or fibrous additives]. Izvestiya vysshikh uchebnykh zavedenii. Stroitel'stvo. 2018. No. 8 (716). Pp. 58‒68. (rus)

20. Pukharenko Yu.V., Aubakirova I.U., Staroverov V.D. Vliyanie armiruyushchikh volokon na formirovanie struktury yacheistykh betonov v rannem vozraste [The influence of reinforcement fiber on cellular concrete structure formation]. Vestnik grazhdanskikh inzhenerov. 2014. No. 3. Pp. 154‒158. (rus)

21. Nabokin O.D., Nasyrov V.A. Vliyanie zoly severskoi TETs na svoistva penobetonnoi smesi [Seversk TTP ash effect on foam concrete mixture properties]. In: Izbrannye doklady 65-i Yubileinoi universitetskoi nauchno-tekhnicheskoi konferentsii studentov i molodykh uchenykh Sbornik dokladov (Proc. Sci. Conf. of Students and Young Scientists). 2019. Pp. 185‒188. (rus)

22. Davraz M., Kilinçarslan Ş., Koru M., Tuzlak F. Investigation of relationships between ultrasonic pulse velocity and thermal conductivity coefficient in foam concretes. Acta Physica Polonica A. 2016. V. 130. No. 1. DOI: 10.12693/APhysPolA.130.469

23. Kudyakov A.I., Steshenko A.B., Konusheva V.V., Syrkin O.O. Tekhnologicheskie priemy umen'sheniya usadki neavtoklavnogo penobetona i povysheniya klassa po prochnosti [Production methods of reducing non-autoclave foamed concrete shrinkage and increasing its quality class]. Vestnik of Tomsk State University of Architecture and Building. 2016. No. 5 (58). Pp. 129‒139. (rus)


Review

For citations:


Kudyakov A.I., Steshenko A.B., Dushenin N.P., Ryabtseva N.E. Heat-insulating non-autoclaved lightweight concrete with hydraulic ash removal. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(5):105-117. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-5-105-117

Views: 421


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)