Structural and mechanical model of spiral fiber-reinforced concrete
https://doi.org/10.31675/1607-1859-2021-23-5-59-70
Abstract
About the Authors
O. S. BochkarevaRussian Federation
Olga S. Bochkareva, Specialist
38, Volodarskii Str., 625000, Tyumen
S. A. Erenchinov
Russian Federation
Sergey A. Erenchinov, PhD, A/Professor
38, Volodarskii Str., 625000, Tyumen
G. A. Zimakova
Russian Federation
Galina A. Zimakova, PhD, A/Professor
38, Volodarskii Str., 625000, Tyumen
E. A. Kasper
Russian Federation
Elena A. Kasper, Senior Lecturer
38, Volodarskii Str., 625000, Tyumen
References
1. Kalashnikov V.I. Evolyutsiya razvitiya sostavov i izmenenie prochnosti betonov. Betony nastoyashchego i budushchego. Chast' 1. Izmenenie sostavov i prochnosti betonov [Concrete compositions and concrete strength. Concretes of the present and future. Part 1. Concrete composition and strength]. Stroitel'nye materialy. 2016. No. 1−2. Pp. 96−103. (rus)
2. Kalashnikov V.I., Tarakanov O.V., Kuznetsov Yu.S., Volodin V.M., Belyakova E.A. Betony novogo pokoleniya na osnove sukhikh tonkozernisto-poroshkovykh smesei [Next generation concretes based on fine-grain dry powder mixes]. Materials Magazine of Civil Engineering. 2012. No. 8. Pp. 47−53. (rus)
3. Gu C., Ye G., Sun W. Ultrahigh performance concrete-properties, applications and perspectives. Science China Technological Sciences. 2015. V. 58. No. 4. Pp. 587−599.
4. Stashevskaya N.A., Okol'nikova G.E., Asikov D.M. Obzor i analiz issledovanii primeneniya vysokoprochnogo fibrobetona dlya vysotnogo stroitel'stva. [Review and analysis of investigations of high-strength fibrous concrete applications for high-ise construction]. Sistemnye tekhnologii. 2017. No 23. Pp. 51−55. (rus)
5. Bruhwiler E., Denarie E. Rehabilitation of concrete structures using ultra-high performance fiber reinforced concrete. In: Proc. 2nd Int. Symposium on Ultra-High Performance of FiberReinforced Concrete. Kassel. 2008. Pp. 895−902.
6. Okol'nikova G.E., Belov A.P., Slin'kova E.V. Analiz svoistv razlichnykh vidov fibrobetonov [The properties of various types of fiber-reinforced concrete]. Sistemnye tekhnologii. 2018. No. 26. Pp. 206−210. (rus)
7. Denisov A.V., Rogachev K.V., Ivanenko S.V. Rezul'taty proverki modeli struktury fibrobetona, razrabotannoi dlya analiticheskogo opredeleniya ego termicheskikh i radiatsionnykh izmenenii, po eksperimental'nym dannym usadki pri tverdenii [The model of fiber-reinforced concrete structure for analytical determination of its thermal and radiation changes from the experimental data on shrinkage during curing]. Naukovedenie. 2016. V. 8. No 4. Available: http://naukovedenie.ru/PDF/43TVN416.pdf. (rus)
8. Jin L., Du X.-L. Meso numerical simulation of reinforced concrete members. Shuili Xuebao. 2012. V. 43. No. 10. Pp. 1230–1242.
9. Shimanovsky A., Kuziomkina H., Pleskachevskii Yu., Yakubovich V. Finite element modeling of the cement matrix and filler grains interaction. Technology. 2013. V. 5. No. 4. Pp. 171–174.
10. Lippmann N., Steinkopff Th., Schmauder S., Gumbsch P. 3D-finite-element-modelling of microstructures with the method of multiphase elements. Computational Materials Science. 1997. V. 9. No. 1–2. Pp. 28–35.
11. Wulf J., Schmauder S., Fischmeister H.F. Finite element modelling of crack propagation in ductile fracture. Computational Materials Science. 1993. V. 1. No. 3. Pp. 297–301.
12. Knyazeva E.N., Kukareko V.A., Aleksandrov V.Yu., Timoshenko N.P. Primenenie metoda konechnykh elementov pri issledovanii kompozitsionnykh materialov. Podkhody, metodiki, programmnye sredstva [Finite element method for investigation of composite materials. Approaches, methods, computer programs]. Mekhanika mashin, mekhanizmov i materialov. 2013. No. 3(24). Pp. 69–76. (rus)
13. Mohammadi Shah M., Komeili M., Phillion A.B., Milani A.S. Toward better understanding of the effect of fiber distribution on effective elastic properties of unidirectional composite yarns. Computers and Structures. 2016. V.163. Pp. 29–40.
14. Kurkin E.I., Sadykova V.O. Application of short fiber reinforced composite materials multilevel model for design of ultra-light aerospace structures. Procedia Engineering. 2017. V. 185. Pp. 182–189.
15. Pleskachevskii Yu.M., Shimanovskii A.O. Komp'yuternoe modelirovanie struktury i svoistv kompozitov v nagruzhennykh konstruktsiyakh [Computer modeling of structure and properties of composites in loaded structures]. Mekhanika mashin, mekhanizmov i materialov. 2016. No. 1 (34). Pp. 41−51. (rus)
16. Solov'ev A.N., Ziborov E.N., Shevtsov S.N. Opredelenie uprugikh svoistv armirovannykh kompozitsionnykh materialov na osnove konechno-elementnogo modelirovaniya [Finite element modeling of elastic properties of reinforced composite materials]. Nauka Yuga Rossii. 2016. V. 12. No. 2. Pp. 3−10. (rus)
17. Mishnev M.V., Korolev A.S., Zadorin A.A., Khoroshilov N.A. Hybrid hot-curing epoxy binder fiberglass and evaluation of its effectiveness in load-bearing chimneys. Stroitel'stvo unikal'nykh zdanii i sooruzhenii. 2020. No. 8 (93). 9302.
Review
For citations:
Bochkareva O.S., Erenchinov S.A., Zimakova G.A., Kasper E.A. Structural and mechanical model of spiral fiber-reinforced concrete. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(5):59-70. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-5-59-70