Numerical simulation of subgrade soil deformation properties for prediction of earthquake resistance of structures
https://doi.org/10.31675/1607-1859-2021-23-3-167-178
Abstract
Purpose: The aim of this paper is to predict the earthquake resistance in strengthening the subgrade soils of structures. Numerical simulation of the total increment of seismic intensity during the artificial transformation and strengthening of subgrade soils based on geomechanical modeling.
Research methods: Classical mathematical methods for modeling subgrade soils in a plane nonlinear problem.
Originality: A new approach is developed to determine the total increment of seismic intensity using the ratio between the subsidence values of building foundations and structures before and after soil strengthening. The paper presents the prediction results of changes in seismic resistance of real objects, based on engineering and geologi cal surveys and numerical computer models. It is shown that due to the transformation of subgrade soils, the earthquake resistance can be reduced by more than 0.5 points.
Practical implication: This technique can be used to adjust the score for individual objects and map the boundaries of seismic zones.
About the Authors
M. V. SokolovRussian Federation
Mikhail V. Sokolov, PhD, A/Professor
28, Vesennyaya Str., 650000, Kemerovo, Russia, 650000
S. M. Prostov
Russian Federation
Sergei M. Prostov, DSc, Professor
28, Vesennyaya Str., 650000, Kemerovo, Russia, 650000
O. V. Gerasimov
Russian Federation
Oleg V. Gerasimov, PhD, A/Professor
28, Vesennyaya Str., 650000, Kemerovo, Russia, 650000
References
1. Yakovlev D.V., Lazarevich T.I., Tsirel S.V. Natural and induced seismic activity in Kuzbass. Journal of Mining Science. 2013. V. 49. Pp. 862–872.
2. Bryksin A.A., Seleznev V.S. Vliyanie tekhnogennykh faktorov na seismichnost' raionov Kuzbassa ozera Baikal [Influence of technogenic factors on seismicity of the Kuzbass regions of Lake Baikal]. Geologiya i geofizika. 2012. V. 3. No. 3. Pp. 399–405. (rus)
3. Shabarov A.N., Tsirel S.V., Morozov K.V., Rasskazov I.Yu. Concept of integrated geodynamic monitoring in underground mining. Gornyi Zhurnal. 2017. V. 9. Pp. 120–134.
4. Masaev Yu.A., et al. Massovye vzryvy pri dobyche uglya otkrytym sposobom i ikh vliyanie na seismicheskie proyavleniya v Kuzbasse [Mass explosions during open pit coal mining and their impact on seismic manifestations in Kuzbass]. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noi promyshlennosti. 2016. No. 4. Pp. 48–54. (rus)
5. Emanov A.F., et al. Seismicheskie aktivizatsii pri razrabotke uglya v Kuzbasse [Seismic activation during coal mining in Kuzbass]. Fizicheskaya mezomekhanika. 2009. No. 12. Pp. 37–43. (rus)
6. Emanov A.A., Emanov A.F., Fateev A.V., Leskova E.V. Tekhnogennaya seismicheskaya aktivizatsiya na yuge Kuzbassa (p. Malinovka) [Technogenic seismic activation in the south of Kuzbass (Malinovka settlement)]. Interekspo Geo-Sibir'. 2017. No. 3. V. 2. Pp. 66–71. (rus)
7. Ibragimov M.I., Semkin V.V., Shaposhnikov A.V. Tsementatsiya gruntov in"ektsiei rastvorov v stroitel'stve [Cementation of soils by solution injection]. Moscow: ASV, 2017. 266 p. (rus)
8. Prostov S.M., Pokatilov A.V., Rudkovsky D.I. Elektrokhimicheskoe zakreplenie gruntov [Electrochemical soil fixation]. Tomsk: TSU, 2011. 294 p. (rus)
9. Fadeev A.B. Metod konechnykh elementov v geomekhanike [Finite element method in geomechanics]. Moscow: Nedra, 1987. 221 p. (rus)
10. Zuevskaya N.V. Yardnick S.A., et al. Izmenenie napryazheno-deformirovannogo sostoyaniya gruntov pri ustroistve glubokikh vyemok [Stress-strain state of soils during deep excavations]. Nauka i progress transporta. Vestnik Dnepropetrovskogo natsional'nogo universiteta zheleznodorozhnogo transporta. 2011. No. 38. (rus)
11. Bondarev V.I., et al. Rekomendatsii po primeneniyu seismicheskoi razvedki dlya izucheniya fiziko-mekhanicheskikh svoistv rykhlykh gruntov v estestvennom zaleganii dlya stroitel'nykh tselei [Recommendations on the use of seismic exploration for studying physical and mechanical properties of loose soils in natural occurrence for construction purposes]. Moscow: 1974. 142 p. (rus)
12. Serdyukov A.S., Yablokov A.V., Chernyshov G.S., et al. Metody seismicheskikh issledovanii vodonasyshchennosti gruntov i gornykh porod s ispol'zovaniem poverkhnostnykh voln [Seismic studies of water saturation of soils and rocks using surface waves]. Fundamental'nye i prikladnye voprosy gornykh nauk. 2016. V. 1. No. 3. Pp. 185–190. (rus)
13. Prostov S.M., Hämäläinen V.A., Gerasimov O.V. Kompleksnyi monitoring protsessov vysokonapornoi in"ektsii gruntov [Monitoring of high-pressure injection process of soils]. Kemerovo; Moscow: Russian Universitie; Kuzbassvuzizdat, 2006. 94 p. (rus)
14. Sokolov M., Prostov S., Kharitonov I. Geomechanical substantiation of the parameters of injection fixing of the soil bases during the liquidation of the emergency condition of the structure. Proc. 3rd Int. Innovative Mining Symposium. 2018. V. 41. DOI: 10.1051/e3sconf/20184101009
15. Sokolov M.V., Prostov S.M. Geomekhanicheskoe obosnovanie parametrov in"ektsionnogo zakrepleniya neodnorodnogo neustoichivogo gruntovogo osnovaniya zdaniya [Geomechanical substantiation of injection fixation parameters of unstable subgrade soil]. Vestnik KuzGTU. 2017. No. 3. Pp. 37–44. (rus)
Review
For citations:
Sokolov M.V., Prostov S.M., Gerasimov O.V. Numerical simulation of subgrade soil deformation properties for prediction of earthquake resistance of structures. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(3):167-178. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-3-167-178