Electroplating plant sewage technology
https://doi.org/10.31675/1607-1859-2021-23-3-143-154
Abstract
Electroplating plant sewage is characterized by high concentration of metals, suspended solids, acids, alkalis and other contaminants. The irregular inflows, low pH values and specific sewage composition complicate its treatment. The main treatment methods include chemical precipitation, ion exchange, chemical and electrochemical oxidation, flotation, filtration and membrane separation. The paper proposes a possible variant of wastewater treatment in a small electroplating plant. The proposed flow diagram includes sedimentation of polluting substances with sodium hydroxide and oxidation with anolyte. The method results in a 88.9 % reduction in chemical oxygen demand, 99.5 % reduction in suspended solids, 99.8 % reduction in iron, 95.7 % reduction in surfactants, and 99.9 % reduction in copper ions. The pH value of the treated water is 7.8 and matches the value of a slightly alkaline environment.
About the Authors
L. V. BelovaRussian Federation
Larisa V. Belova, PhD, A/Professor
38, Volodarskii Str., 625000, Tyumen, Russia
E. I. Vyalkova
Russian Federation
Elena I. Vialkova, PhD, A/Professor
38, Volodarskii Str., 625000, Tyumen, Russia
E. S. Glushchenko
Russian Federation
Ekaterina S. Glushchenko, Assistant Lecturer
38, Volodarskii Str., 625000, Tyumen, Russia
E. Yu. Osipova
Russian Federation
Elena Y. Osipova, PhD, A/Professor
2, Solyanaya Sq., 634003, Tomsk, Russia
References
1. Barkan M., Kornev A. Development of new technological solutions for recovery of heavy nonferrous metals from technogenic waste of electroplating plants and sludge of water treatment systems. Eastern-European Journal of Enterprise Technologies. 2018. V. 2. Pp. 17–24.
2. Panayotova T., Dimova-Todorova M., Dobrevsky I. Purification and reuse of heavy metals containing wastewaters from electroplating plants. Desalination. 2007. V. 206. Pp. 135–140.
3. Fu F., Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management. 2011. V. 92. Pp. 407–418.
4. Kharakteristika gal'vanicheskogo proizvodstva [Electroplating plant characterization]. Available: https://studbooks.net/1000239/ekologiya/harakteristika_galvanicheskogo_proizvodstva (accessed March 20, 2020).
5. Azimi A., Azari A., Rezakazemi M., Ansarpour M. Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Reviews. 2017. V. 4. Pp. 1–24.
6. Kurniawan T.A., Chan G.Y.S., Lo W.-H., Babel S. Physicochemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal. 2006. V. 118. Pp. 83–98.
7. Charemtanyarak L. Heavy metals removal by chemical coagulation and precipitation. Water Science and Technology. 1999. V. 39. Pp. 135−138.
8. Chen Q., Luo Z., Hills C., Xue G., Tyrer M. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research. 2009. V. 43. Pp. 2605–2614.
9. Gunatilake S.K. Methods of Removing heavy metals from industrial wastewaters. Journal of Multidisciplinary Engineering Science Studies. 2015. V. 1. Pp. 8–12.
10. Alyüz B., Veli S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials. 2009. V. 167. Pp. 482–488.
11. Kang S.Y., Lee J.U., Moon S.H., Kim K.W. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere. 2004. V. 56. Pp. 141–147.
12. Da browski A., Hubicki Z., Podko cielny P., Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004. V. 56. Pp. 91–106.
13. Motsi T., Rowson N.A., Simmons M.J.H. Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing. 2009. V. 92. Pp. 42–48.
14. Ostroski I.C., Barros M.A.S.D., Silvab E.A., Dantas J.H., Arroyo P.A., Lima O.C.M. A comparative study for the ion exchange of Fe(III) and Zn(II) on zeolite NaY. Journal of Hazardous Materials. 2009. V. 161. Pp. 1404–1412.
15. Taffarel S.R., Rubio J. On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Minerals Engineering. 2009. V. 22. Pp. 336–343.
16. Adhoum N., Monser L., Bellakhal N., Belgaied J.-E. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. Journal of Hazardous Materials. 2004. V. 112. Pp. 207–213.
17. Al-Shannag M., Al-Qodah Z., Bani-Melhem K., Qtaishat M.R., Alkasrawi M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chemical Engineering Journal. 2015, V. 260. Pp. 749–756.
18. Chen G. Electrochemical technologies in wastewater treatment. Separation and Purification Technology. 2004. V. 38. Pp. 11–41.
19. Akbal F., Camcı S. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination. 2011. V. 269. Pp. 214–222.
20. Kuznetsov V.V. Efremova E.N., Kolesnikov A.V., Achkasov M.G. Ochistka stochnykh vod ot poverkhnostno-aktivnykh veshchestv metodami elektrookisleniya i elektroflotatsii. Rol' prirody poverkhnostno-aktivnogo veshchestva [Wastewater treatment of surfactants by electrooxidation and electro-flotation. The role of the surfactant nature]. Gal'vanotekhnika i obrabotka poverkhnosti. 2016. V. 24. Pp. 48–55. (rus)
21. Watcharasing S., Kongkowit W., Chavadej S. Motor oil removal from water by continuous froth flotation using extended surfactant: Effects of air bubble parameters and surfactant concentration. Separation and Purification Technology. 2009. V. 70. Pp. 179–189.
22. Kolesnikov V.A., Il'in V.I. Ekologiya i resursosberezhenie v elektrokhimicheskikh proizvodstvakh. Mekhanicheskie i fiziko-khimicheskie metody ochistki promyvnykh i stochnykh vod [Ecology and resource conservation in electrochemical production. Mechanical and physicochemical methods for wastewater and effluent treatment]. Moscow, 2004. 220 p. (rus)
23. Al-Rashdi B.A.M., Johnson D.J., Hilal N. Removal of heavy metal ions by nanofiltration. Desalination. 2013. V. 315. Pp. 2–17.
24. Mohammad A.W., Teow Y.H., Ang W.L., Chung Y.T., Oatley-Radcliffe D.L., Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination. 2015. V. 356. Pp. 226–254.
25. Ng L.Y., Mohammad A.W., Ng C.Y. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: Effective ways to develop membrane selective barriers and rejection capability. Advances in Colloid and Interface Science. 2013. V. 197–198. Pp. 85–107.
26. Shenvi S.S., Isloor A.M., Ismail A.F. A review on RO membrane technology: Developments and challenges. Desalination. 2015. V. 368. Pp. 10–26.
27. Joo S.H., Tansel B. Novel technologies for reverse osmosis concentrate treatment: A review. Journal of Environmental Management. 2015. V. 150. Pp. 322–335.
28. Gode F., Pehlivan E. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. Journal of Hazardous Materials. 2006. V. 136. Pp. 330–337.
Review
For citations:
Belova L.V., Vyalkova E.I., Glushchenko E.S., Osipova E.Yu. Electroplating plant sewage technology. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(3):143-154. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-3-143-154