Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

GEOMETRIC PARAMETERS OF BORED PILES DETERMINED BY DUAL CHANNEL ACOUSTIC MEASUREMENTS

https://doi.org/10.31675/1607-1859-2020-22-5-173-186

Abstract

Surface acoustic measurements in examining pile foundations is increasingly used in practice, as it is an effective tool for the measuring the length and defects of piles. However, this method for diagnostics of monolithic pile structures, for example, bored piles, can lead to significant measurement errors. This is because the propagation velocity of acoustic waves in a bored pile is usually calculated theoretically, and many factors affecting the propagation velocity of acoustic waves are not taken into account. According to earlier research, dual channel acoustic measurements used to determine the length of bored piles, makes it possible to accurately calculate the propagation velocity of acoustic waves and, accordingly, the pile length. It is shown that dual channel acoustic measurements applied to bored piles allow detecting with sufficient accuracy such defects as cross-sectional deviations of the pile shaft along its length.

About the Authors

D. G. Samarin
Tomsk State University of Architecture and Building
Russian Federation

Dmitry G. Samarin, PhD, A/Professor

2, Solyanaya Sq., 634003, Tomsk



V. L. Ustyuzhanin
Tomsk State University of Architecture and Building
Russian Federation

Vladimir L. Ustyuzhanin, Senior Lecturer

2, Solyanaya Sq., 634003, Tomsk



A. A. Lobanov
Tomsk State University of Architecture and Building
Russian Federation

Alexander A. Lobanov, Senior Lecturer

2, Solyanaya Sq., 634003, Tomsk



References

1. Kapustin V.V. Primenenie volnovyh metodov dlya opredeleniya dliny svaj [Pile length measurement using acoustic wave methods]. Tekhnologii sejsmorazvedki. 2009. No. 2. Pp. 113–117. (rus)

2. Kapustin V.V. Metodika izucheniya osobennostej rasprostraneniya akusticheskih voln v betonnyh svayah s ispol'zovaniem metodov chislennogo modelirovaniya [Acoustic wave propagation in concrete piles studied by numerical simulation methods]. Vestnik Moskovskogo universiteta. Ser. 4. Geologiya. 2008. No. 3. Pp. 65–70. (rus)

3. Hmel'nickij A.Yu., Vladov M.L., Kapustin V.V. Eksperimental'noe issledovanie vliyaniya vmeshchayushchego grunta na rasprostranenie akusticheskih voln v svajnyh konstrukciyah [Containment soil impact on acoustic wave propagation in pile structures]. Inzhenernye izyskaniya. 2012. No. 6. Pp. 16–23. (rus)

4. Kapustin V.V. K voprosu o fizicheskih osnovah akusticheskogo metoda ispytaniya svaj [Physical bases for acoustic pile testing]. Inzhenernye izyskaniya. 2011. No. 11. Pp. 10–15. (rus)

5. Kapustin V.V. Akusticheskie metody kontrolya kachestva svajnyh fundamentnyh konstrukcij [Acoustic quality control for pile foundation structures]. Razvedka i ohrana nedr. 2008. No. 12. Pp. 1216. (rus)

6. Kapustin V.V. Primenenie sejsmicheskih i akusticheskih tekhnologij pri issledovanii sostoyaniya podzemnyh stroitel'nyh konstrukcij [Seismic and acoustic technologies in studying underground structure conditions]. Tekhnologii sejsmorazvedki. 2008. No. 1. Pp. 91–99. (rus)

7. Aleshin D.N., Kotova N.V., Aleshina E.A. Kompleks metodov nerazrushayushchego kontrolya dlya obsledovaniya fundamentov zdanij [Non-destructive testing of building foundations]. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universiteta. 2014. No. 4 (10). Pp. 40–42. (rus)

8. ASTM D5882–16. Standard test method for low strain impact integrity testing of deep foundations.

9. Carino N.J. The impact-echo method: an overview. Building and Fire Research Laboratory. National Institute of Standards and Technology Gaithersburg, MD 20899-8611 USA, 2001.

10. Davis A.G. Nondestructive testing of wood piles. In: Proc. 2nd Int. Conf. on Wood Poles and Piles. Fort Collins, CO, 1994.

11. Xiping Wang, Ross R.J. Nondestructive evaluation of standing trees with a stress wave method. Wood and Fiber Science. 2001. No. 33 (4). Pp. 522–533.

12. Schubert F., Kohler B., Pfeiffer A. Time domain modeling of axisymmetric wave propagation in isotropic elastic media with CEFIT – Cylindrical Elastodynamic Finite Integration Technique. Journal of Computational Acoustics. 2001. V. 9. No. 3. Pp. 1127–1146.

13. Niederleithinger E., Taffe A., Fechner, T. Improved parallel seismic technique for foundation assessment. Proc. Annu. Meeting “The Application of Geophysics to Engineering and Environmental Problems”. Atlanta, USA, 2005.

14. Niederleithinger E. Numerical simulation of low strain dynamic pile tests. Proceedings of Stresswave. Lisbon, 2008,

15. Samarin D.G., Ustyuzhanin V.L., Lobanov A.A. Issledovaniya po opredeleniyu dliny buronabivnykh svai akusticheskimi metodami, osnovannymi na skheme dvukh kanalov izmereniya [Acoustic measurements of bored pile length using two channels]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2020. V. 22. No. 4. Pp. 180–191. (rus)


Review

For citations:


Samarin D.G., Ustyuzhanin V.L., Lobanov A.A. GEOMETRIC PARAMETERS OF BORED PILES DETERMINED BY DUAL CHANNEL ACOUSTIC MEASUREMENTS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020;22(5):173-186. (In Russ.) https://doi.org/10.31675/1607-1859-2020-22-5-173-186

Views: 408


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)