Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Acoustic measurements of bored pile length using two channels

https://doi.org/10.31675/1607-1859-2020-22-4-180-191

Abstract

Non-destructive testing of structures is an effective way to determine their required parameters. One of the promising directions is the acoustic measurement of the pile length using two channels. This method is based on the excitation and registration of elastic waves on the pile surface. A limitation of acoustic methods is that the speed of the elastic waves in the pile is assumed to be known in advance. Research results show that the practical application of this condition can lead to a significant error. This is especially true for bored piles, where the speed of the elastic wave propagation is determined by many different factors. This paper proposes to increase the measurement accuracy of the acoustic wave speed in the bored pile. The use of two measurement channels, which implies the introduction of the specified distance between the receiving devices, made it possible to increase the measurement accuracy up to 5 %.

About the Authors

D. G. Samarin
Tomsk State University of Architecture and Building
Russian Federation

Dmitry G. Samarin, PhD, A/Professor

2, Solyanaya Sq., 634003, Tomsk, Russia



V. L. Ustyuzhanin
Tomsk State University of Architecture and Building
Russian Federation

Vladimir L. Ustyuzhanin, Senior Lecturer

2, Solyanaya Sq., 634003, Tomsk, Russia



A. A. Lobanov
Tomsk State University of Architecture and Building
Russian Federation

Aleksandr A. Lobanov, Senior Lecturer

2, Solyanaya Sq., 634003, Tomsk, Russia



References

1. Kapustin V.V. Primenenie volnovyh metodov dlya opredeleniya dliny svaj [Wave methods in determining pile lengths]. Tekhnologii sejsmorazvedki. 2009. No. 2. Pp. 113−117. (rus)

2. Kapustin V.V. Metodika izucheniya osobennostej rasprostraneniya akusticheskih voln v betonnyh svayah s ispol'zovaniem metodov chislennogo modelirovaniya [Methodology for studying acoustic wave propagation in concrete piles using numerical simulation methods]. Vestnik Moskovskogo universiteta. Ser. 4. Geologiya. 2008. No. 3. Pp. 65−70. (rus)

3. Hmel'nickij A.Yu., Vladov M.L., Kapustin V.V. Eksperimental'noe issledovanie vliyaniya vmeshchayushchego grunta na rasprostranenie akusticheskih voln v svajnyh konstrukciyah [Host soil influence on acoustic wave propagation in pile structures]. Inzhenernye izyskaniya. 2012. No. 6. Pp. 16−23. (rus)

4. Kapustin V.V. K voprosu o fizicheskih osnovah akusticheskogo metoda ispytaniya svaj [Physical foundations of the acoustic pile test method]. Inzhenernye izyskaniya. 2011. No. 11. Pp. 10−15. (rus)

5. Kapustin V.V. Akusticheskie metody kontrolya kachestva svajnyh fundamentnyh konstrukcij [Acoustic methods of quality control of pile foundation structures]. Razvedka i ohrana nedr. 2008. No. 12. P. 1216. (rus)

6. Kapustin V.V. Primenenie sejsmicheskih i akusticheskih tekhnologij pri issledovanii sostoyaniya podzemnyh stroitel'nyh konstrukcij [Application of seismic and acoustic technologies in underground building structures]. Tekhnologii sejsmorazvedki. 2008. No. 1. Pp. 91−99. (rus)

7. Aleshin D.N., Kotova N.V., Aleshina E.A. Kompleks metodov nerazrushayushchego kontrolya dlya obsledovaniya fundamentov zdanij [Non-destructive testing methods for inspection of building foundations]. Vestnik Sibirskogo gosudarstvennogo industrial'nogo universiteta. 2014. No. 4 (10). Pp. 40–42. (rus)

8. ASTM D5882 – 16 Standard Test Method for Low Strain Impact Integrity Testing of Deep Foundations.

9. Carino N.J. The impact-echo method: An overview. Building and Fire Research Laboratory. National Institute of Standards and Technology Gaithersburg, MD 20899-8611, USA, 2001.

10. Davis A.G. Nondestructive testing of wood piles. Proc. 2nd Int. Conf. on Wood Poles and Piles. 1994. March 21–23. Fort Collins, CO.

11. Xiping Wang, Ross R.J. Nondestructive evaluation of standing trees with a stress wave method. Wood and Fiber Science. 2001. V. 33. No. 4. Pp. 522–533.

12. Schubert F., Kohler B., Pfeiffer A. Time domain modeling of axisymmetric wave propagation in isotropic elastic media with CEFIT – Cylindrical Elastodynamic Finite Integration Technique. Journal of Computational Acoustics. 2001. V. 9. No. 3. Pp. 1127–1146.

13. Niederleithinger E., Taffe A., Fechner, T. Improved parallel seismic technique for foundation assessment. Extended abstracts of Annual Meeting “The Application of Geophysics to Engineering and Environmental Problems”. Atlanta, USA, 2005.

14. Niederleithinger E. Numerical simulation of low strain dynamic pile tests. Proceedings of Stresswave. Lisbon, 2008


Review

For citations:


Samarin D.G., Ustyuzhanin V.L., Lobanov A.A. Acoustic measurements of bored pile length using two channels. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020;22(4):180-191. (In Russ.) https://doi.org/10.31675/1607-1859-2020-22-4-180-191

Views: 619


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)