Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

LIQUID ASPHALT BINDERS IN CYLINDRICAL TUBE IN TERMS OF THE OSTWALD-DE WAELE MODEL

https://doi.org/10.31675/1607-1859-2020-22-1-171-192

Abstract

The liquid asphalt binder in a cylindrical tube is described in terms of the Ostwald-de Waele model. The dependence of the liquid flow rate on the pressure drop; dependencies are obtained for radial distribution of the flow rate and viscosity. The medium structuring, which is most noticeable at low values of nonlinearity leads to the almost uniform profile of the core flow rate, which is typical to the plastic flow. The liquid pseudoplastic media with a law nonlinearity is characterized by the presence of a highly viscous core and a narrow region of the near-wall flow with low values of effective viscosity. With increasing in medium consistency, the average viscosity increases. This effect is most pronounced for flow motions at a small pressure drop. For low values of the pressure drop, the non-Newtonian properties of the medium lead to a significant hydraulic resistance due to the presence of the inner structure. With increasing pressure drop, hydraulic resistance decreases due to the medium destruction.

About the Authors

O. V. Matvienko
Tomsk State University of Architecture and Building; National Research Tomsk State University
Russian Federation

Oleg V. Matvienko, DSc, Professor

2, Solyanaya Sq., 634003, Tomsk

36, Lenin Ave., 634050, Tomsk



V. P. Bazuev
Tomsk State University of Architecture and Building
Russian Federation

Viktor P. Bazuev, PhD, Senior Research Assistant

2, Solyanaya Sq., 634003, Tomsk



I. S. Cherkasov
National Research Tomsk State University
Russian Federation

Ilya S. Cherkasov, MSc

36, Lenin Ave., 634050, Tomsk



A. E. Litvinova
National Research Tomsk State University
Russian Federation

Aleona E. Litvinova, MSc

36, Lenin Ave., 634050, Tomsk



References

1. Metodicheskie rekomendacii po proektirovaniju zhestkih dorozhnyh odezhd [Recommendations for road pavement design]. Moscow: Informavtodor, 2004. (rus)

2. Tehnicheskie rekomendacii po ustrojstvu i priemkev jekspluataciju dorozhnyh pokrytij s uchetom trebovanij mezhdunarodnyh standartov po rovnosti [Technical recommendations for pavement operation with regard to requirements for international standards for eveness]. Moscow, 2003. (rus)

3. Babak O.G., Starkov G.B. Primeneniye modifitsirovannykh vyazhushchikh v dorozhnom stroitel'stve [Modified binders in road construction]. Dorozhnaya tekhnika i tekhnologii. 2001. No. 5. Pp. 72–75. (rus)

4. Gorshenina G.I. Mikhaylov N.V. Polimerbitumnyye izolyatsionnyye materialy [Polymer bitumen insulation materials]. Moscow: Nedra, 1967. 210 p. (rus)

5. Kulizhnikov A.M. Trebovaniya k gruntam zemlyanogo polotna i podstilayushchego osnovaniya [Requirements for subgrade soils]. Avtomobil'nyye dorogi. 2012. No. 5. Pp. 82–83. (rus)

6. Efimenko S.V. Efimenko V.N., Badina M.V. Nekotoryye osobennosti obosnovaniya svoystv prochnosti i deformiruyemosti glinistykh gruntov dlya proyektirovaniya dorozhnykh odezhd [Substantiation for strength and deformability properties of clay soils for road pavement design]. Dorogi i mosty. 2016. No. 35/1. Pp. 70–82. (rus)

7. Churilin V., Efimenko S., Matvienko O., Bazuev V. Simulation of stresses in asphalt-concrete pavement with frost heaving. MATEC Web of Conferences. 2018. V. 216. DOI: 10.1051/matecconf/201821601011.

8. Matvienko O.V., Bazuyev V.P., Venik V.N., Bazarov R.B., Arutyunyan E.R. Matematicheskoye modelirovaniye sdvigoustoychivosti asfal'tobetonnykh pokrytiy avtomobil'nykh dorog [Mathematical modelling of road pavement shear-resistance]. Vestnik of Tomsk State University of Architecture and Building. 2017. No. 4 (63). Pp. 158–170. (rus)

9. Matvienko O.V., Bazuyev V.P., Churilin V.S. Modelirovaniye napryazheniy i deformatsiy dorozhnykh pokrytiy [Modeling of stresses and deformations of road pavements]. Dorogi i mosty. 2016. No. 2 (36). Pp. 139–153. (rus)

10. Rudenskaya I.M., Rudenskiy A.V. Organicheskiye vyazhushchiye dlya dorozhnogo stroitel'stva [Organic binders for road construction]. Moscow: Transport, 1984. 229 p. (rus) 11. Gokhman L.M. Primeneniye polimerno-bitumnykh vyazhushchikh v dorozhnom stroitel'stve [Application of polymer-bitumen binders in road construction]. Dorozhnaya tekhnika i tekhnologii. 2001. No. 5. Pp. 65–70. (rus)

11. Kaganovich Ye.V., Kartseva I.I., Izmailova G.G. Polimernyye modifikatory bituma i asfal'tobetona [Bitumen and asphalt concrete polymer modifiers]. Vestnik KazdorNII. 2004. No. 1 (2). Pp. 44–47. (rus)

12. Matvienko O.V., Bazuyev V.P., Yuzhanova N.K. Chislennoye issledovaniye perekhoda k turbulentnomu rezhimu techeniya vnutrennikh zakruchennykh potokov bitumnykh vyazhushchikh [Numerical study of transition to turbulent flow conditions of internal twisted streams of bituminous binders]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 2. Pp. 132–143. (rus)

13. Matvienko O.V., Bazuyev V.P., Dul'zon N.K., Smirnova N.G., Agafonova M.V. Chislennoye issledovaniye struktury techeniya i teploobmena pri zakruchennom techenii bitumnodispersnykh sistem v tsilindricheskikh kanalakh [Numerical investigation of flow structure and heat exchange of swirling flows of disperse bitumen systems in cylindrical channels]. Vestnik of Tomsk State University of Architecture and Building. 2014. No. 2 (43). Pp. 80–93. (rus)

14. Matvienko O.V. Issledovaniye teploobmena i formirovaniya turbulentnosti vo vnutrennem zakruchennom potoke zhidkosti pri nizkikh chislakh Reynol'dsa [Heat exchange and turbulence formation in internal fluid eddy current at low Reynolds number]. Inzhenerno-fizicheskiy zhurnal. 2014. V. 87. No. 4. Pp. 908–918. (rus)

15. Matvienko O.V., Bazuyev V.P., Smirnova N.G., Pushkareva G.V., Dul'zon N.K. Issledovaniye smesheniya koaksial'nykh zakruchennykh potokov dlya prigotovleniya bitumnykh dispersnykh sistem [A study of mixing coaxial swirling flows for preparation of asphalt dispersion systems]. Vestnik of Tomsk State University of Architecture and Building. 2014. No. 3 (44). Pp. 123–134. (rus)

16. Matvienko O.V., Bazuyev V.P., Turkasova N.G., Baygulova A.I. Issledovaniye protsessa modifikatsii bituma v inzhektornom smesitele [Investigation of bitumen modification in injector mixer]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 3. Pp. 202–213. (rus)

17. Matvienko O.V., Bazuev V.P., Venik V.N., Smirnova N.G. Numerical investigation of HerschelBulkley fluids mixing. In: IOP Conf. Ser. “Materials Science and Engineering Advanced Materials in Construction and Engineering”, 2014; Proc. Int. Sci. Conf. of Young Scientists „Advanced Materials in Construction and Engineering‟, 2015. Pp. 012034.

18. Matvienko O.V., Efa A.K., Bazuyev V.P., Yevtyushkin Ye.V. Chislennoye modelirovaniye raspada turbulentnoy strui v sputnom zakruchennom potoke [Numerical simulation of turbulent jet decay in satellite eddy current]. Izvestiya vuzov. Fizika. 2006. V. 49. No.6. Pp. 96–107. (rus)

19. Bazuyev V.P., Matvienko O.V., Voronenko V.L. Modelirovaniye protsessa modifitsirovaniya bituma v kavitatsionno-smesitel'nom dispergatore [Simulation of bitumen modification process in cavitation-mixing dispersant]. Vestnik of Tomsk State University of Architecture and Building. 2010. No. 4. Pp. 121–128. (rus)

20. Matvienko O.V., Bazuyev V.P., Venik V.N., Smirnova N.G. Chislennoye issledovaniye protsessa obrazovaniya kavitatsionnykh puzyr'kov v smesitel'nom ustroystve [Computational investigation of cavitation in cavitation disperser]. Vestnik of Tomsk State University of Architecture and Building. 2014. No. 4 (45). Pp. 231–245. (rus)

21. Matvienko O.V., Bazuyev V.P., Venik V.N., Smirnova N.G. Eksperimental'noye issledovaniye protsessa kavitatsii v tekhnologicheskikh ustroystvakh [Experimental study of cavitation in different apparatuses]. Vestnik of Tomsk State University of Architecture and Building. 2015. No. 6. Pp. 165–176. (rus)

22. Gun R.B. Neftyanyye bitumy [Oil bitumen]. Moscow: Khimiya, 1973. 432 p. (rus)

23. Grudnikov I.B. Proizvodstvo neftyanykh bitumov [Oil bitumen production]. Moscow: Khimiya, 1983. 192 p. (rus)

24. Zolotarev V.A. Dorozhnyye bitumnyye vyazhushchiye i asfal'tobetony [Road bitumen binders and asphalt concrete]. Kharkov: KHNADU, 2014. 180 p. (rus)

25. Anderson A., Christensen D.W., Bahia H.U., Dongre R., Sharma M.G., Antle C.E., Button J. Strategic highway research program. Technical Report SHRP-A-369. 1994.

26. Sybilski D. Non-Newtonian viscosity of polymer-modified bitumen. Materials and Structures. 1993. V. 26, Pp. 15–23. DOI:10.1007/BF02472233

27. Malkin A.Ya., Isayev A.I. Reologiya: kontseptsii, metody, prilozheniya [Rheology: concepts, methods, applications]. St.-Petersburg: Professiya, 2007. 560 p. (rus)

28. Matviyenko O.V., Unger F.G., Bazuyev V.P. Matematicheskiye modeli proizvodstvennykh protsessov dlya prigotovleniya bitumnykh dispersnykh sistem [Mathematical models of production processes for preparation of bituminous dispersion systems]. Tomsk: TSUAB, 2015. (rus)

29. Kutepov A.M., Polyanin L.D.. Zapryanov Z.D. Vyaz'min A.V., Kazenin D.A. Khimicheskaya gidrodinamnka: spravochnoye posobiye [Chemical hydrodynamics: reference book]. Moscow: Byuro Kvantum, 1996. (rus)

30. Klimov D.M., Petrov A.G., Georgiyevskiy D.V. Vyazkoplasticheskiye techeniya: dinamicheskiy khaos, ustoychivost' i peremeshivaniye [Viscoplastic currents: dynamic chaos, stability and mixing]. Moscow: Nauka, 2005. (rus)

31. Wilkinson U.L. Nen'yutonovskiye zhidkosti [Non-Newton liquids]. Moscow: Mir, 1964. (rus)

32. Matvienko O.V., Bazuev V.P., Sabylina N.R., Aseeva A.E., Surtaeva A.A. Issledovanie ustanovivshegosya techeniya vyazkoplasticheskogo bitumnogo vyazhushchego, opisyvaemogo model''yu Shvedova – Bingama, v tsilindricheskoi trube [Shvedov-Bingham model of steady flow of visco-plastic bitumen binder in cylindrical tube]. Vestnik Tomskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta – Journal of Construction and Architecture. 2019. V. 20. No. 3. Pp. 158–177. (rus)

33. Matvienko O.V., Bazuyev V.P., Dul'zon N.K. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka vyazkoplasticheskoy zhidkosti v tsilindricheskom kanale [Mathematical simulation of swirling flow of viscoplastic liquid in cylindrical channel]. Inzhenernofizicheskiy zhurnal. 2014. V. 87. No. 5. Pp. 1129–1137. (rus)

34. Matvienko O.V., Yevtyushkin E.V. Matematicheskoye issledovaniye separatsii dispersnoy fazy v gidrotsiklone pri ochistke vyazkoplasticheskikh burovykh rastvorov [Mathematical study of disperse phase separation in hydrocyclone in viscoplastic drilling fluid purification]. Inzhenerno-Fizicheskiy zhurnal. 2011. V. 84. No. 2. Pp. 243–252. (rus)

35. Matvienko O.V., Bazuyev V.P., Aseeva A.E. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka psevdoplasticheskoy zhidkosti Balkli–Gershelya v tsilindricheskom kanale [Mathematical simulation of swirling flow of Balkley-Gershel pseudoplastic liquid in cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2019. V. 92. No. 1. Pp. 215–226. (rus)

36. Matvienko O.V., Bazuyev V.P., Aseeva A.E. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka dilatantnoy zhidkosti Balkli – Gershelya v tsilindricheskom kanale [Mathematical simulation of swirling flow of Balkley-Gershel dilatant fluid in cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2019. V. 92. No. 6. Pp. 2641–2651. (rus)

37. Matvienko O.V., Bazuyev V.P., Yuzhanova N.K. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka dilatantnoy zhidkosti v tsilindricheskom kanale [Mathematical simulation of swirling flow of dilatant fluid in cylindrical channel]. Inzhenerno-fizicheskiy zhurnal. 2014. V. 87. No. 1. Pp. 192–199. (rus)

38. Matvienko O.V., Bazuyev V.P., Yuzhanova N.K. Matematicheskoye modelirovaniye techeniya zakruchennogo potoka psevdoplasticheskoy zhidkosti v tsilindricheskom kanale [Mathematical simulation of swirling flow of pseudoplastic fluid in cylindrical channel]. Inzhenernofizicheskiy zhurnal. 2011. V. 84. No. 3. Pp. 544–547. (rus)

39. Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid and gas mechanics]. Moscow: Nauka, 1974. (rus)

40. Perminov A.V., Lyubimova T.P. Ustoychivost' statsionarnogo ploskoparallel'nogo techeniya psevdoplasticheskoy zhidkosti v ploskom vertikal'nom sloye [Stability of stationary planeparallel flow of pseudoplastic fluid in flat vertical layer]. Vychislitel'naya mekhanika sploshnykh sred. 2014. V. 7. No. 3. Pp. 270–278 42. (rus)

41. Matvienko O.V. Issledovaniye ustanovivshegosya techeniya psevdoplasticheskoy zhidkosti, opisyvayemoy model'yu Sisko, v tsilindricheskoy trube [Established flow of pseudoplastic liquid in cylindrical tube in terms of the Cisco model]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika. 2018. No. 55. Pp. 99–112. (rus)

42. Matvienko O.V. Chislennoye issledovaniye techeniya nen'yutonovskikh zhidkostey v tsilindricheskom kanale [Numerical study of non-Newtonian fluids in cylindrical channel]. Izvestiya vysshikh uchebnykh zavedeniy. Fizika. 2014. V. 57. No. 8-2. Pp. 183–189. (rus)

43. Matvienko O.V., Agafontseva M.V., Bazuyev V.P. Issledovaniye dinamiki puzyr'ka v zakruchennom potoke nelineyno-vyazkoy zhidkosti [Bubble dynamics in swirling flow of nonlinear and viscous liquids]. Vestnik of Tomsk State University of Architecture and Building. 2012. No. 4. Pp. 144–156. (rus)


Review

For citations:


Matvienko O.V., Bazuev V.P., Cherkasov I.S., Litvinova A.E. LIQUID ASPHALT BINDERS IN CYLINDRICAL TUBE IN TERMS OF THE OSTWALD-DE WAELE MODEL. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2020;22(1):171-192. (In Russ.) https://doi.org/10.31675/1607-1859-2020-22-1-171-192

Views: 667


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)