Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

ALUMINOSILICATE MICROSPHERE PRODUCTION

https://doi.org/10.31675/1607-1859-2019-21-6-134-139

Abstract

The development of new energy-efficient methods in the production of building materials is always important. One of such materials is microspheres which can be obtained by plasma energy. A study of physical processes during the formation of microsphere density determines the optimum parameters for the production of high-quality building materials. The article is devoted to production process of microspheres based on aluminosilicates. The plasma jet modes and their effect on the morphology of generated microspheres are investigated. It is shown that microspheres with different morphology can be produced by using a plasma gas control.  

About the Authors

V. V. Shekhovtsov
Tomsk State University of Architecture and Building
Russian Federation

Valentin V. Shekhovtsov, Assistant Lecturer

2, Solyanaya Sq., 634003, Tomsk



O. G. Volokitin
Tomsk State University of Architecture and Building
Russian Federation

Oleg G. Volokitin, DSc, A/Professor

2, Solyanaya Sq., 634003, Tomsk



R. E. Gafarov
Tomsk State University of Architecture and Building
Russian Federation

Ruslan E. Gafarov, Research Assistant

2, Solyanaya Sq., 634003, Tomsk



M. A. Semenovykh
Tomsk State University of Architecture and Building
Russian Federation

Mark A. Semenovykh, Research Assistant

2, Solyanaya Sq., 634003, Tomsk



References

1. Solonenko O.P. Criterion conditions for the formation of hollow microspheres from plasma-treated agglomerated particles. Thermophysics and Aeromechanics. 2014. V. 21. No. 6. Pp. 735–746.

2. Perfilov V.A., Kotlyarevskaya A.V., Kanavets U.V. Vliyanie polykh steklyannykh mikrosfer na svoistva legkikh melkozernistykh betonov [The effect of hollow glass microspheres on the properties of light fine-grained concrete]. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2016. No. 43 (62). Pp. 93–103. (rus)

3. Navid R., Carsten K. Cenospheres: A review. Fuel. 2017. V. 207. No. 1. Pp. 1–12.

4. Gulyaev P.Yu., Gulyaev I.P., Milyukova I.V., Cui H.-Z. Temperature measurements for Ni-Al and Ti-Al phase control in SHS synthesis and plasma spray processes. High Temperatures – High Pressures. 2015. V. 44. No. 2. Pp. 83–92.

5. Kornienko E.E., Lapushkina E.J., Kuzmin V.I. Air plasma sprayed coatings of self-fluxing powder materials. Journal of Physics: Conference Series. 2014. V. 567. No. 1. P. 012-010.

6. Yi Li, Xiangpeng Gao, Hongwei Wu. Further investigation into the formation mechanism of ash cenospheres from an Australian coal-fired power station. Energy Fuels. 2013. V. 27. No. (2). Pp. 811–815.

7. Shelby J.E. Introduction to glass science and technology. Cambridge: The Royal Society of Chemistry, 2005. 312 p.

8. Vassilev S.V., Menendez R., Diaz-Somoano M., Martinez-Tarazona M.R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Char-acterization of ceramic cenosphere and salt concentrates. Fuel. 2004. V. 83. Pp. 585–603.

9. Donskoi A.V., Klubnikin V.S. Elektroplazmennye protsessy i ustanovki v mashinostroenii [Electroplasma processes and installations in mechanical engineering]. Leningrad: Mashi-nostroenie, 1979. 221 p. (rus)

10. Zhukov A.S., Arkhipov V.A., Bondarchuk S.S., Gol’din V.D. Evaluation of the morphology of particles produced by plasma-chemical synthesis of ceramic powders. Russian Journal of Physical Chemistry. 2013. V. 7. No. 6. Pp. 777–782.

11. Gulyaev I.P. Obrabotka polykh poroshkov v kamere peremennogo davleniya [Hollow powder processing in a variable pressure chamber]. Vestnik Yugorskogo gos. un-ta. 2013. V. 29. No. 2. Pp. 23–30. (rus)

12. Shekhovtsov V.V., Volokitin G.G., Skripnikova N.K., Volokitin O.G., Chibirkov V.K. Ustroistvo dlya polucheniya mikrosfer i mikrosharikov iz oksidnykh materialov [Device for producing microspheres and microballs from oxide materials]. Patent Russ. Fed. N 2664287, 2018. (rus)

13. Kelbaliev G.I. Koeffitsienty soprotivleniya tverdykh chastits, kapel' i puzyrei razlichnoi formy [Resistance coefficients of solid particles, droplets and bubbles of various shape]. Teoretiches-kie osnovy khimicheskoi tekhnologii. 2011. V. 45. No. 3. Pp. 264–283. (rus)

14. Sternin L.E., Shraiber A.A. Mnogofaznye techeniya gaza s chastitsami [Multiphase gas flow with particles]. Moscow: Mashinostroenie, 1994. 320 Pp. (rus)

15. Arkhipov V.A., Usanina A.S. Dvizhenie chastits dispersnoi fazy v nesushchei srede [Particles motion of dispersed phase in a carrier medium]. Tomsk: TSU, 2014. 252 p. (rus)


Review

For citations:


Shekhovtsov V.V., Volokitin O.G., Gafarov R.E., Semenovykh M.A. ALUMINOSILICATE MICROSPHERE PRODUCTION. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2019;(6):134-139. (In Russ.) https://doi.org/10.31675/1607-1859-2019-21-6-134-139

Views: 589


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)