BOTTOM-ASH MIXTURE DEFORMATION PARAMETERS OBTAINED IN LABORATORY AND NATURAL CONDITIONS
https://doi.org/10.31675/1607-1859-2019-21-2-215-227
Abstract
In engineering geology and soil mechanics, there are dependencies that allow one to transfer from deformation parameters obtained in the laboratory conditions to that obtained in natural conditions and between parameters obtained during laboratory tests using different methods. These dependencies greatly simplify and facilitate research into the field. However, for bottom-ash mixtures, considered as man-made soil for the embankment construction, the construction of such dependencies has not been previously performed. The aim of this work is to obtain these dependencies and determine the modulus of deformation under triaxial compression, the elastic moduli determined in laboratory conditions on a lever press and experimental tray. The dependencies are also obtained using the plate test method on the experimental embankment and the California bearing ratio in a wide range of density and humidity.
It is found that the transfer equations derived earlier for deformation parameters are not suitable for the bottom-ash mixes. Mathematical dependencies are then derived for the deformation parameters of these mixes in different conditions.
The Originality and practical implications of this work is the derivation of new dependencies based on experimental data allowing to obtain desired values of these parameters for bottom-ash embankments with higher accuracy than achieved by other authors using mathematical calculations.
About the Authors
A. A. LunevRussian Federation
Aleksandr A. Lunev, Research Assistant
5, Mira Ave., 644080, Omsk
V. V. Syrotyuk
Russian Federation
Viktor V. Sirotyuk, DSc, Professor
5, Mira Ave., 644080, Omsk
References
1. Anshakov A.A., Gauss K.S., Volokitin O.G., Shekhovtsov V.V. Sovremennye tekhnologii sozdaniya i obrabotki stroitel'nykh materialov s ispol'zovaniem energii termicheskoi plazmy [Modern production and treatment technologies using thermal PLASMA energy]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2018. V. 20. No. 4. Pp. 135–144. (rus)
2. Kosach A.F., Rashchupkina M.A., Darulis M.A., Gorchakov V.G. Issledovanie vliyaniya ul'tradispersnogo napolnitelya na osnove zoly gidroudaleniya na svoistva tsementnogo kamnya [Cement brick properties modified by ultrafine ash-based additive]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2019. V. 21. No. 1. Pp. 150–158. (rus)
3. Putilin E.I., Tsvetkov V.C. Primenenie zol unosa i zoloshlakovykh smesei pri stroitel'stve avtomobil'nykh dorog [The use of fly ash and bottom-ash mixtures in automobile road construction]. Moscow: Soyuzdornii, 2003. 58 p. (rus)
4. User guidelines for waste and byproduct materials in pavement construction. Available: www.fhwa.dot.gov/publications/research/infrastructure/pavements/97148/019.cfm (accessed January 19, 2019).
5. Collins R.J., Srivastava L. Use of ash in highway construction: Delaware demonstration project, Final Report N GS-6540. Palo Alto: Electric Power Research Institute, 1989. 126 p.
6. Brendel G.F., Glogowski P.E. Ash utilization in highways: Pennsylvania demonstration project, Report N GS-6431. Palo Alto: Electric Power Research Institute, 1989. 132 p.
7. Haleema A., Luthrab S., Mannana B., Khuranaa S., Kumarc S. Critical factors for the successful usage of fly ash in roads and bridges and embankments: analyzing Indian perspective, Resources Policy. 2016. V. 49. Pp. 334–348.
8. Hadbaatar A., Mashkin N.A., Stenina N.G. Study of ash-slag wastes of electric power plants of Mongolia applied to their utilization in road construction. Procedia Engineering. 2016. V. 150. Pp. 1558–1562.
9. Pal S.K., Ghosh A. Shear strength behavior of Indian flu ashes. Indian Geotechnical Conference Geotechnics in Infrastructure Development (GEO-TIDE). 2009. V. 1. Pp. 18–22.
10. Ivanov E.V. Obosnovanie primeneniya zoloshlakovykh smesei dlya stroitel'stva zemlyanogo polotna s uchetom vodno-teplovogo rezhima [Rationale for the use of bottom-ash mixtures for earth-bed construction in water-thermal regime]. Omsk: SibADI, 2015. 165 p.
11. Sirotyuk V.V., Lunev A.A. Strength and deformation characteristics of ash and slag mixture. Magazine of Civil Engineering. 2017. No. 6. Pp. 3–16. doi: 10.18720/MCE.74.1.
12. Lunev A.A., Sirotyuk V.V. Vliyanie vlazhnosti na nesushchuyu sposobnost' zemlyanogo polotna iz zoloshlakovykh smesei [Effect of humidity on bearing capacity of bottom-ash mixtures]. Vestnik BGTU im. V.G. Shukhova. 2017. V. 12. Pp. 14–20. (rus)
13. Boldyrev G.G. Mel'nikov A.V., Novichkov A.G. Interpretatsiya rezul'tatov laboratornykh ispytanii s tsel'yu opredeleniya deformatsionnykh kharakteristik gruntov [Interpretation of field test results to determine soil strength characteristics]. Inzhenernye izyskaniya. 2014. V. 5–6. Pp. 98–108. (rus)
14. Kazantsev V.S. Opredelenie popravochnykh koeffitsientov k kompressionnomu modulyu deformatsii pylevato-glinistykh elyuvial'nykh, neogenovykh i paleogenovykh gruntov kontinental'nogo genezisa chelyabinskoi oblasti [Correction factors for compression modulus of deformation of silty-clayed eluvial, Neogene and paleogene soils of continental genesis in the Chelyabinsk region]. Vestnik YuUrGU. 2017. V. 14. Pp. 38–43. (rus)
15. Toth P.S., Chan H.T., Cragg C.B. Coal ash as structural fill with special reference to Ontario experience. Canadian Geotechnical Journal. 1987. V. 25 Pp. 694–704.
16. Pandian N.S. Fly ash characterization with reference to geotechnical application. Journal Indian Institute of Science. 2004. V. 84. Pp. 189–216.
17. Martin J.P., Collins R.A., Browning J.S., Biehl F.J. Properties and use of fly ashes for embankments. Energy. 1990. V. 116. Pp. 71–86.
18. El-kasaby E.A. Estimation of guide values for the modulus of elasticity of soil. Bulletin of Faculty of Engineering. 1991. V. 19.No. 1. Pp. 1–7.
19. Semenova T.V., Dolgikh G.V., Polugorodnik B.N. Primenenie kaliforniiskogo chisla nesushchei sposobnosti i dinamicheskogo konusnogo penetrometra dlya otsenki kachestva uplotneniya grunta [Californian number of bearing capacity and dynamic cone penetrometer in assessment of soil compaction quality]. Vestnik SibADI. 2013. V. 1. Pp. 59–66. (rus)
20. Heukelom W., Foster C.R. Dynamic testing of pavements. Journal of the Soil Mechanics and Foundations Division, ASCE. 1960. V. 86. No. SM1. Pp. 1–28.
21. Heukelom W., Klomp A.J.G. Dynamic testing as a means of controlling pavements during and after construction. Proc. 1st Int. Conf. on Structural Design of Asphalt Pavements. 1962. V. 203. Pp. 495–510.
22. Green J.L., Hall J.W. Nondestructive vibratory testing of airport pavements. Vol. I: Experimental test results and development of evaluation methodology and procedure. Federal Aviation Administration Report N FAA-RD-73-205-1. Washington: NTIS, 1975. P. 214.
23. Witczak M.W., Qi X., Mirza M.W. Use of nonlinear subgrade modulus in AASHTO design procedure. Journal of Transportation Engineering. 1995. V. 121. No. 3. Pp. 273–282.
24. Powell W.D., Potter J.F., Mayhew H.C., Nunn M.E. The structural design of bituminous roads. Transport and Road Research Laboratory, TRRL Laboratory Report 1132. Crowthorne: Department of Transport, 1984. P. 62. Available: https://trl.co.uk/sites/default/files/LR1132.pdf (accessed January 19, 2019).
25. Putri E.E., Kameswara N.S.V.R., Mannan M.A. Evaluation of Modulus of elasticity and modulus of subgrade reaction of soils using CBR test. Journal of Civil Engineering Research. 2012. V. 2. Pp. 34–40.
26. Guide for mechanistic-empirical design of new and rehabilitated pavement structures. Final document appendix CC-1: correlation of CBR values with soil index properties. Illinois: Ara, Inc, 2001. P 204. Available: http://onlinepubs.trb.org/onlinepubs/archive/mepdg/2appendices_ CC.pdf (accessed January 19, 2019).
27. Jayamali K.V.S.D., Nawagamuwa U.P. Empirical correlations between CBR and index properties for Sri Lankan soils. Proc. Int. Sci. Conf. on Geotechnical Engineering. 2015. V. 1. Pp. 189–192.
28. John A., Joson A., Venia J., Chandran K.B., Chacko A. Correlation of CBR value with properties of red soil. International Research Journal of Engineering and Technology. 2017. V. 4. I. 3. Pp. 2042–2044.
29. Rani S., Nagaraj. Prediction of CBR value with soil index properties; case study on Yadadri Region. International Journal of Latest Engineering and Management Research. 2017. V. 2. I. 7. Pp. 09–12.
30. Kumar K.S.P, Nanduri R.K., Kumar N.D. Validation of predicted California bearing ratio values from different correlations. American Journal of Engineering Research. 2014. V. 3. I. 8. Pp. 344–352.
31. Rakaraddi P.G., Gomarsi V. Establishing relationship between CBR with different soil properties. International Journal of Research in Engineering and Technology. 2015. V. 4. I. 2. Pp. 182–188.
32. Yashas. S. R., Harish S.N., Muralidhara H.R. Effect of California bearing ratio on the properties of soil. American Journal of Engineering Research. 2016. V. 5. I. 4. Pp. 28–37.
Review
For citations:
Lunev A.A., Syrotyuk V.V. BOTTOM-ASH MIXTURE DEFORMATION PARAMETERS OBTAINED IN LABORATORY AND NATURAL CONDITIONS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2019;(2):215-227. (In Russ.) https://doi.org/10.31675/1607-1859-2019-21-2-215-227