Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

ESTIMATION OF OPTICAL INHOMOGENEITY AREA BASED ON DIGITAL IMAGE ANALYSIS

Abstract

The paper presents the possibility of measuring the area of optical inhomogeneity on the test object surface based on the fine-resolution digital images analysis. A method of formation of half-tone and color images of optical inhomogeneity is suggested based on the especially designed criteria. An algorithm of measuring the contrast area is proposed on the basis of boundary effects. The fields of application of this method are discussed.

About the Authors

SERGEI P. Osipov
Tomsk Polytechnic University
Russian Federation


IVAN I. Podshivalov
Tomsk State University of Architecture and Building
Russian Federation


OLEG. S. Osipov
Tomsk Polytechnic University
Russian Federation


DANIIL V. Alibekova, Kyzy
Tomsk Polytechnic University
Russian Federation


ДАНИИЛ Chesnokov
Tomsk Polytechnic University
Russian Federation


References

1. Sadekov R.N. Opredelenie dalnosti do ob'ekta na osnove analiza ego izobrazheniy [Object range determination based on its image analysis]. Izvestiya instituta inzhenernoy fiziki. 2010. V. 2. No. 16. Pp. 65–67. (rus)

2. Bachevskiy S.V. Tochnost opredeleniya dalnosti i orientatsii ob'ekta metodom proportsii v matrichnyih televizionnyih sistemah [Accuracy of object range and orientation determination by proportion method in matrix-assisted TV systems]. Voprosyi radioelektroniki. Seriya: Tehnika televideniya, 2010. No. 1. Pp. 57–66. (rus)

3. Starovoytov E.I., Savchuk D.V. Ispolzovanie geometricheskih iskazheniy izobrazheniya, formiruemogo KMOP-fotopriemnikom, dlya kontrolya skorosti sblizheniya kosmicheskih apparatov [Image geometric distortion formed by CMOS photodetector used for spacecraft closing speed control]. Mechatronics, Automation, Control. 2014. No. 2. Pp. 66–68. (rus)

4. Osipov S.P., Popov M.Yu., Fedyaev R.V., Kosach A.A. Sposob opredeleniya parametrov tormozheniya liftov i pod'yomnikov na osnove analiza potoka fotoizobrazheniy [Determination of lift and elevator braking parameters based on photographic image flow]. Tehnologii tehnosfernoy bezopasnosti: Internet-zhurnal. 2011. No. 4. 10 p. (rus)

5. Hassabo A.I. Semi-automatic area measurement of irregular two dimensional shapes in digital images. Applied Mechanics and Materials. 2012. V. 170. Pp. 2953–2961.

6. Zhao P., Ni G.Q. Precise curved surface area measurement with a light-pen vision measurement system. Optic-International Journal for Light and Electron Optics. 2010. V. 121. No. 20. Pp. 1848–1852.

7. Kondratov V.T., Demchenko K.A. Problemyi izmereniya ploschadey nanoob'ektov [Measurement of nano-object areas]. Girotehnologii, navigatsiya, upravlenie dvizheniem i konstruirovanie aviatsionno-kosmicheskoy tehniki. Kiev, 2011. Pp. 57–65. (rus)

8. Terehov A.G. Sopostavlenie zemleustroitelnyih i sputnikovyih dannyih IRS LISS o razmerah poley v Severnom Kazahstane [Comparison of land use and satellite data IRS LISS on field size in Northern Kazakhstan]. Sovremennyie problemyi distantsionnogo zondirovaniya Zemli iz kosmosa. 2008. V. 5. No. 2. Pp. 358–363. (rus)

9. Migun N.P., Gnusin A.B. Teplovyie vozdeystviya pri kapillyarnom nerazrushayuschem kontrole [Thermal effects at capillary non-destructive testing]. Minsk : Belarus. nuvuka, 2014. 131 p. (rus)

10. Bryiksina N.A., Polischuk Yu.M. Issledovanie tochnosti distantsionnogo izmereniya ploschadey ozer s ispolzovaniem kosmicheskih snimkov [Remote measurement accuracy of lake areas using space images]. Geoinformatika. 2013. No. 1. Pp. 64–68. (rus)

11. Muad A.M., Foody G.M. Super-resolution mapping of lakes from imagery with a coarse spatial and fine temporal resolution. International Journal of Applied Earth Observation and Geoinformation. 2012. V. 15. Pp. 79–91.

12. Zholobova O.A. Proizvodstvennyiy kontrol kachestva kamennyih sten i drugih ograzhdayuschih konstruktsiy zdaniy po fotograficheskim izobrazheniyam [Manufacturing quality control of stone walls and other enclosing structures of buildings based on photographic images]. Vestnik MGSU. 2013. No. 11. Pp. 234–240. (rus)

13. McCormick N., Waterfall P., Owens A. Optical imaging for low-cost structural measurements. Proc. ICE-Bridge Engineering. 2013. V. 167. No. 1. Pp. 33–42.

14. Chen B., Fu Z., Pan Y., Wang J., Zeng Z. Single leaf area measurement using digital camera image. Computer and Computing Technologies in Agriculture IV. Berlin : Heidelberg : Springer, 2011. Pp. 525–530.

15. Kornilov F.A. Poisk strukturnykh razlichy izobrazheny: algoritmy i metody issledovaniya [Detection of structural differences in images: algorithms and research methods]. Mashinnoye obucheniye i analiz dannykh. V. 1. No. 7. Pp. 902–919. (rus)

16. Bartalev S.A., Yegorov B.A., Yefremov B.Yu., Lupyan Ye.A., Stytsenko F.B., Flitman Ye.B. Otsenka ploshchadi pozharov na osnove kompleksirovaniya sputnikovykh dannykh razlichnogo prostranstvennogo razresheniya MODIS i Landsat-TM/ETM+ [Fire areas assessment based on satellite data integration of sampling resolution MODIS and Landsat-TM/ETM+]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2012. No. 2. Pp. 343–351. (rus)


Review

For citations:


Osipov S.P., Podshivalov I.I., Osipov O.S., Alibekova, Kyzy D.V., Chesnokov  ESTIMATION OF OPTICAL INHOMOGENEITY AREA BASED ON DIGITAL IMAGE ANALYSIS. Vestnik of Tomsk state university of architecture and building. 2015;(3):103-112. (In Russ.)

Views: 656


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)