PIPELINE CATHODE PROTECTION ANALYSIS FOR IDENTIFICATION OF CORROSION AND STRESS-CORROSION FORMATION
https://doi.org/10.31675/1607-1859-2018-20-5-128-139
Abstract
Based on long-term corrosion tests of 17GS steel samples of the pipeline installed in various soils of the taiga-marsh region in the central part of Western Siberia, it is shown that in the absence of cathode protection, the corrosion rate ranges from 0.11 to 0.06 mm per year, i.e. 0.085 mm per year averagely. The residual corrosion rate of samples under the cathode protection ranges from 0.01 to 0.004 mm per year or the 0.007 mm per year averagely, when the air limiting current density exceeds the oxygen limiting current density by a factor of 3-7. A further increase in the current of cathode protection leads to the intensive hydrogen release. The actual measured values of the cathode protection current density at its potentials (with the resistive component) from –1.79 V to 3.5 V exceed the oxygen limiting current density by 30–50 or more times. It is experimentally shown that at a cathode current density exceeding the density of oxygen limiting current by 54.43 times, the acceleration of hydrogen pressure reaches 0.007 MPa per day in a closed cavity at a 20 mm vacuum pressure. It is shown that the acceleration of hydrogen pressure in micro- and macro-cavities of the near-surface layer of the pipeline is not determinant. The advantageous embrittlement of cathode hydrogen is the reduction of cohesive strength of the near-surface layer of the pipe wall.
About the Authors
V. I. KhizhnyakovRussian Federation
DSc, Professor
2, Solyanaya Sq., 634003, Tomsk, Russia
A. V. Negodin
Russian Federation
Senior Lecturer
2, Solyanaya Sq., 634003, Tomsk, Russia
V. S. Kalinichenko
Russian Federation
Senior Lecturer
2, Solyanaya Sq., 634003, Tomsk, Russia
References
1. Khizhnyakov V.I., Trofimova E.V. Prevyshenie toka katodnoi zashchity nad predel'nym po kislorodu – faktor elektroliticheskogo navodorozhivaniya trubnykh stalei [Excess of cathode protection current over oxygen limiting cathode protection current as a factor of electrolytic hydrogenation of tube steels]. Sovremennye metody i tekhnologii zashchity ot korrozii i iznosa [Modern methods and technologies of corrosion and wear protection]. Moscow, 2009. Pp. 8–9. (rus)
2. Khizhnyakov V.I. O spetsifike korrozii podzemnykh truboprovodov v usloviyakh taezhnobolotnoi zony tsentral'noi chasti Zapadnoi Sibiri [Specificity of corrosion of underground pipelines in taiga-marsh zone in the central Western Siberia]. Zashchita metallov. 1983. V. 19. No. 5. Pp. 781–783. (rus)
3. Khizhnyakov V.I. Opyt korrozionnogo obsledovaniya magistral'nykh nefteprovodov v usloviyakh tsentral'noi chasti Zapadnoi Sibiri [Experience of corrosion inspection of main oil pipelines in the central part of Western Siberia]. Truboprovodnyi transport nefti. 1992. No. 6. Pp. 17–19. (rus)
4. Khizhnyakov V.I. Opredelenie ostatochnoi skorosti korrozii truboprovodov pri razlichnykh rezhi-makh katodnoi zashchity [Determination of corrosion residual rate of pipelines under different cathode protection regimes]. Praktika protivokorrozionnoi zashchity. 2008. No. 2. Pp. 18–22. (rus)
5. Khizhnyakov V.I., Ivanov Yu.A., Nazarov B.F. Perenosnoi polevoi pribor dlya opredeleniya ostatochnoi skorosti korrozii i stepeni navodorozhivaniya stenki neftegazoprovodov pri razlichnykh rezhimakh katodnoi zashchity [Portable field device for determining corrosion residual rate and hydrogenation of pipeline wall under various cathode protection regimes]. Ekologicheskie problemy i tekhnogennaya bezopasnost' stroitel'stva, ekspluatatsii i rekonstruktsii neftegazoprovodov. Novye tekhnologii i materialy [Ecological problems and technogenetic safety of construction, operation and reconstruction of oil and gas pipelines. New technologies and materials]. Tomsk, 2005. P. 36. (rus)
6. Vigdorovich V.I., Makarov A.P. Kontrol' korrozionnoi agressivnosti serovodorodsoderzhashchikh sred i otsenka effektivnosti sposobov zashchity pri nepreryvnoi ekspluatatsii ustanovok neftegazovykh proizvodstv [Corrosion aggression control of hydrogen sulphide-containing media and in-process evaluation of protection methods of oil-and-gas facilities]. Praktika protivokorrozionnoi
7. zashchity. 2015. No. 1. Pp. 60–71. (rus)
8. Khizhnyakov V.I., Zhilin A.V. Opredelenie inkubatsionnogo perioda obrazovaniya defektov KRN na katodno zashchishchaemoi poverkhnosti podzemnykh stal'nykh truboprovodov [Determination of incubation period for corrosion formation on cathode protected surface of underground steel pipelines]. Praktika protivo-korrozionnoi zashchity. 2009. No. 4. Pp. 44–48. (rus)
9. Mazur I.I., Ivantsov O.M. Bezopasnost' truboprovodnykh sistem [Safety of pipeline systems]. Moscow: Elima, 2000. 705 p. (rus)
10. Karpenko G.V. Prochnost' stali v korrozionnoi srede [Steel strength in corrosion environment]. Moscow: Mashgiz, 1963. 88 p. (rus)
11. Sunagatov M.F. Stress-korroziya magistral'nykh gazoprovodov [Stress corrosion of main pipelines]. Bezopasnost' truda v promyshlennosti. 2011. No. 9. Pp. 52–57. (rus)
Review
For citations:
Khizhnyakov V.I., Negodin A.V., Kalinichenko V.S. PIPELINE CATHODE PROTECTION ANALYSIS FOR IDENTIFICATION OF CORROSION AND STRESS-CORROSION FORMATION. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(5):128-139. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-5-128-139