EXTERNAL REINFORCEMENT OF CONCRETE STRUCTURES USING COMPOSITE MATERIALS
https://doi.org/10.31675/1607-1859-2018-20-5-92-100
Abstract
The paper describes the main directions of non-metallic composite application in concrete reinforcement. The development routes of the structural analysis with composite reinforcement are formulated. The reinforced concrete structure combines the elastic reinforcement element with an adhesive composition having inelastic properties. It is shown that the structural reliability is ensured by adhesion of composite core reinforcement to the concrete. When performing external reinforcement of composite materials, it is necessary to ensure the joint operation of reinforcing elements and the main structure. Today, design methods of concrete structure reinforcement with composite materials do not take into account shear strains in the contact seam. Adhesion of composite material to concrete is indirectly assessed by introducing the service factor of composite material when its design resistance is assigned.
Experimental studies concern concrete structures reinforced by bent elements with external reinforcement made of various composite materials. Reinforced concrete beams with A500 and A600 class reinforcement are considered. Test beams are reinforced with fiberglass, coal and carbonates canvases. Some of test beams have U-shaped anchors at the ends and are made of composite materials. Reinforced beams fracture by different schemes: composite peeling due to the adhesive destruction in the area of formation of normal and inclined cracks, composite
peeling with the destruction of protective layer, composite rupture. A part of reinforced concrete beams before the reinforcement are cracked in the stretched zone. Cracks do not affect the load-bearing capacity of reinforced beams.
About the Authors
V. I. RimshinRussian Federation
DSc, Professor
26, Yaroslavskoe Road, 129337, Moscow, Russia
S. I. Merkulov
Russian Federation
DSc, Professor
33, Radishchev Str., 305000, Kursk, Russia
References
1. Merkulov S.I., Tatarenkov A.I., Starodubtsev V.G. Usilenie zhele-zobetonnykh konstruktsii ekspluatiruemykh zdanii i sooruzhenii [Strengthening of reinforced concrete structures used buildings and structures]. BST: Byulleten' stroitel'noi tekhniki. 2017. No. 4. Pp. 41–43. (rus)
2. Merkulov S.I., Dvornikov V.M., Tatarenkov A.I., Merkulov D.S. Issledovaniya usilennykh zhelezobetonnykh konstruktsii [Research reinforced concrete structures]. Izvestiya vuzov. Stroitel'stvo. 2009. No. 9. Pp. 123–129. (rus)
3. Shilin A.A., Pshenichnyi V.A., Kartuzov D.V. Vneshnee armirovanie zhelezobetonnykh konstruktsii kompozitsionnymi materialami [External reinforcement of reinforced concrete structures with composite materials]. Moscow: Stroiizdat, 2007, 180 p. (rus)
4. Andrae H.-P., Kusch O., Maier M. Carbon fibre composites, a new generation of reinforcement and prestressing tendons. Nauchnye trudy 2-oi Vserossiiskoi (Mezhdunarodnoi) po betonu i zhelezobetonu „Beton i zhelezo-beton – puti razvitiya‟ (Proc. 2nd Int. Sci. Conf. „Concrete and Reinforced Concrete – Glance at Future‟). 2005. V. 4. Pp. 535–546.
5. CNR-DT. 200/2004. Guide for the design and construction of externally bonded FRP. Systems for Strengthening Existing Structures. Rome. 2004. 144 p.
6. Banthia N. Fiber reinforced polymers in concrete construction and advanced repair technologies. University of British Columbia. 37 p.
7. Cardolin A. Carbon fibre reinforced polymers for strengthening of structural elements. Lulea University of Technology, Sweden. 2003. 194 p.
8. Hoff G.W. Strong medicine. Fiber-reinforced polymer materials can help cure many ills that beset concrete. Concrete Construction, July 2000. Pp. 40–47.
9. Nanni A. Guides and specifications for the use of composites in concrete and masonry construction in North America. Proc. Int. Workshop "Composites in Construction: a Reality". Capri, Italy, July 20–2, 2001. Pp. 9–18.
10. Rukovodstvo po usileniyu zhelezobetonnykh konstruktsii kompozitnymi materialami [Guide to reinforcement of reinforced concrete structures with composite materials]. Moscow: Interakva, 2006. 48 p. (rus)
11. ODM 218.3.027–20013. Rekomendatsii po primeneniyu tkanevykh kompozitsionnykh materialov pri remonte zhelezobetonnykh konstruktsii mostovykh sooruzhenii. Rosavtodor [Recommendations on using fabric composite materials in repair of reinforced concrete bridge structures]. Moscow: ROSDORNII, 2013. 60 p. (rus)
12. Rimshin V.I., Galubka A.I., Sinyutin A.V. Inzhenernyi metod rascheta usileniya zhelezobetonnykh plit pokrytiya kompozitnoi armaturoi [Engineering method for calculating reinforcement of reinforced concrete slabs]. Nauchno-tekhnicheskii vestnik Povolzh'ya. 2014. No. 3. Pp. 218–220. (rus)
13. Kustikova Yu.O., Rimshin V.I., Shubin L.I. Prakticheskie reko-mendatsii i tekhnikoekonomicheskoe obosnovanie primeneniya kompozitnoi armatury v zhelezobetonnykh konstruktsiyakh zdanii i sooruzhenii [Practical recommendations and feasibility study of the use of composite reinforcement in reinforced concrete structures of buildings]. Zhilishchnoe stroitel'stvo. 2014. No. 7. Pp. 14–18. (rus)
14. Yushin A.V., Morozov V.I. Eksperimental'nye issledovaniya dvukh proletnykh zhelezobetonnykh balok, usilennykh kompozitnymi materialami po naklonnomu secheniyu [Experimental studies of two span reinforced concrete beams reinforced with composite materials]. Vestnik grazhdanskikh inzhenerov. 2014. No. 5 (46). Pp. 77–84. (rus)
15. Podol'skii P.P., Mihub Ahmad. O programme issledovanii izgi-baemykh zhelezobetonnykh elementov, usilennykh razlichnymi vidami kompozitnykh materialov [Research program for bending reinforced concrete elements reinforced with various types of composite materials]. Rostov-on-Don, 2012. Pp. 51–52. (rus)
16. Kustikova Yu.O., Rimshin V.I. Napryazhenno-deformirovannoe so-stoyanie bazal'toplastikovoi armatury v zhelezobetonnykh konstruktsiyakh [Stress-strain state of basalt plastic reinforcement in reinforced concrete structures]. Promyshlennoe i grazhdanskoe stroitel'stvo. 2014. No. 6. Pp. 6–9. (rus)
17. Rimshin V.I., Merkulov S.I. O normirovanii kharakteristik sterzhnevoi nemetallicheskoi kompozitnoi armatury [Performance valuation of non-metallic composite reinforcement rod]. Promyshlennoe i grazhdanskoe stroitel'stvo. 2016. No. 5. Pp. 22–26. (rus)
18. Merkulov S.I. Analiz i perspektivy razvitiya usileniya betonnykh konstruktsii kompozitnoi armaturoi [Analysis and prospects for the development of concrete structure reinforcement with composite materials]. Bezopasnost' stroitel'nogo fonda Rossii. Problemy i resheniya: materialy mezhdunarodnykh akademicheskikh chtenii (Safety of Russian building fund. Proc. Int. Acad. Readings „Problems and Solutions'). Kursk, 2015. Pp. 170–175. (rus)
19. Stepanov A.Yu., Rimshin V.I. Napryazhenno-deformirovannoe so-stoyanie konstruktsii zdanii i sooruzhenii, armirovannykh kompozitnoi polimernoi armaturoi pri seismicheskom vozdeistvii [Stress-strain state of buildings reinforced with composite polymers under seismic load]. Stroitel'stvo i rekonstruktsiya. 2015. No. 1 (57). Pp. 57–61. (rus)
20. Vincenzo Bianco, Joaquim A.O. Barros, Giorgio Monti. Bond model of NSM-FRP strips in the context strengthening of RC beams. Journal of Structural Engineering. 2003. No. 6. Pp 619–630.
21. Mihub Ahmad, Pol'skoi P.P., Mailyan D.R., Blyagoz A.M. Sopostavlenie opytnoi i teoreticheskoi prochnosti zhelezobetonnykh balok, usilennykh kompozitnymi materialami, s ispol'zovaniem raznykh metodov rascheta [Comparison of experimental and theoretical strength of concrete beams reinforced with composite materials using various calculation methods]. Novye tekhnologii. 2012. No. 4. Pp. 101–110. (rus)
22. Grigor'eva Ya.E. Eksperimental'noe issledovanie vliyaniya vnesh-nego armirovaniya izgibaemykh zhelezobetonnykh balok uglevoloknom na prochnost' i zhestkost' konstruktsii [Strength and rigidity analysis of external reinforcement of bending reinforced concrete beams with carbon fiber].Vestnik MGSU. 2011. No. 8. Pp. 181–185. (rus)
23. Badalova E.N. Eksperimental'nye issledovaniya izgibaemykh zhe-lezobetonnykh konstruktsii, usilennykh prikleivaniem ugleplastikovykh plastin [Experimental studies of bending reinforced concrete structures reinforced by gluing carbon fiber plates]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F. Prikladnye nauki. 2009. No. 12. Pp. 45–50. (rus)
24. Badalova E.N. Usilenie izgibaemykh zhelezobetonnykh konstruktsii ugleplastikovoi armaturoi [Strengthening of flexible concrete structures with carbon fiber reinforced plastic]. Vestnik Polotskogo gosudarstvennogo universiteta. Seriya F. Prikladnye nauki. 2007. No. 6. Pp. 54–59. (rus)
25. Paranicheva N.V., Nazmeeva T.V. Usilenie stroitel'nykh konstruktsii s pomoshch'yu uglerodnykh kompozitsionnykh materialov [Strengthening building structures using carbon composite materials]. Inzhenerno-stroitel'nyi zhurnal. 2010. No. 2. Pp. 19–22. (rus)
26. Rimshin V.I., Merkulov S.I. Elementy teorii razvitiya betonnykh konstruktsii s nemetallicheskoi kompozitnoi armaturoi [Elements of the theory of development of concrete structures with non-metallic composite reinforcement]. Promyshlennoe i grazhdanskoe stroitel'stvo. 2015. No. 5. Pp. 38–42. (rus)
27. Merkulov S.I., Esipov S.M. Prochnost' i deformativnost' kompozitnogo materiala na osnove uglerodnoi fibry pri odnoosnom rastyazhenii [Strength and deformability of carbon fiber composite material under uniaxial tension]. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2016. No. 11. Pp. 69–73. (rus)
Review
For citations:
Rimshin V.I., Merkulov S.I. EXTERNAL REINFORCEMENT OF CONCRETE STRUCTURES USING COMPOSITE MATERIALS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(5):92-100. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-5-92-100