Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

MODERN PRODUCTION AND TREATMENT TECHNOLOGIES USING THERMAL PLASMA ENERGY

https://doi.org/10.31675/1607-1859-2018-20-4-135-144

Abstract

The paper presents research results on silicate melt and glass-ceramic material production based on ashes generated by thermal power plants using the energy of thermal plasma. A plasma-chemical reactor is designed and tested. Calculations show that when the thermal power of plasma torch varies from 50 to 100 kW and the optimum melt temperature of 1850 °C is maintained in the plasma-chemical reactor, the feed rate varies. The dependence between the crystallization properties of the melt and the mixture composition is established. To obtain the material with increased crystallinity, the resulting silicate melt is subjected to plasma treatment at 700 °C for 1 hour and 950 °C for 2 hours. The degree of crystallinity increases up to 60–65 %. Compressive and flexure strength and coefficient of linear expansion of obtained products are determined. The obtained results are compared with those available in the domestic and foreign markets.

About the Authors

A. A. Anshakov
The Kutateladze Institute of Thermal Physics SB RAS
Russian Federation
DSc, Professor


K. S. Gauss
Tomsk State University of Architecture and Building
Russian Federation
Research Assistant


O. G. Volokitin
Tomsk State University of Architecture and Building
Russian Federation
DSc, Professor


V. V. Shekhovtsov
Tomsk State University of Architecture and Building
Russian Federation
Research Assistant


References

1. Anshakov A.S., Urbakh E.K., Urbakh A.E., Cherednichenko V.S., Kuzmin M.G. Investigation of thermal plasma generator of technological function. Thermophysics and Aeromechanics. 2015. V. 22. No. 6. Pp. 775–778.

2. Buyantuev S.L., Urkhanova L.A., Khmelev A.B., Lhasaranov S.A., Kondratenko A.S. Pererabotka zoloshlakovykh otkhodov elektrodugovoy plazmoy dlya polucheniya kompozitsionnykh stroitel'nykh materialov [Plasma processing of ash and slag wastes for the production of composite building materials]. Vestnik VSGUTU. 2016. V. 61. No. 4. Pp. 19–26. (rus)

3. Alekseeva I.P., Dymshits O.S., Zhilin A.A., Mikhailov M.D., Khubetsov A.A. Effect of yttrium oxide on the crystallization of glasses of the MgO-Al2O3-SiO2 system, nucleated by a mix of titanium and zirconium dioxides, and the transparency of glass-crystalline materials in the superhigh-frequency spectral region. Journal of Optical Technology. 2015. V. 82. No. 4. Pp. 262–267.

4. Stefanovsky S.V., Myasoedov B.F., Remizov M.B., Kozlov P.V., Belanova E.A., Shiryaev A.A., Zubavichus Y.V. Cesium speciation in aluminophosphate-based glass-crystalline materials for immobilization of high level waste from uranium-graphite channel reactor spent nuclear fuel reprocessing. Doklady chemistry. 2014. V. 457. Pp. 148–153.

5. Kaz'mina O.V., Vereshchagin V.I., Semukhin B.S. Structure and strength of foam-glass-crystalline materials produced from a glass granulate. Glass Physics and Chemistry. 2011. V. 37. No. 4. Pp. 371–377.

6. Chen M.J., Zhang F.S., Zhu J.X. Effective utilization of waste cathode ray tube glass-crystalline silicotitanate synthesis. Journal of Hazardous Materials. 2010. V. 182. No. 1–3. Pp. 45–49.

7. Kaz'mina O.V., Vereshchagin V.I., Abiyaka A.N. Assessment of the compositions and components for obtaining foam-glass-crystalline materials from aluminosilicate initial materials. Glass and Ceramics. 2009. V. 66. No. 3–4. Pp. 82–85.

8. Beregovoy V.A., Sorokin D.S. Steklokristallicheskiye materialy na osnove kremnistykh porod [Glass-ceramic materials based on siliceous rocks]. Regional'naya arkhitektura i stroitel'stvo. 2015. No. 1. Pp. 54–57. (rus)

9. Akhunov D.B., Zhuraev Kh.A. Steklokristallicheskiye materialy na osnove bazal'tov Kutchinskogo mestorozhdeniya [Glass ceramic materials based on basalt from Kuchinskoe deposit]. Sovremennye nauchnye issledovaniya i razrabotki. 2017. No. 3 (11). Pp. 14–17. (rus)

10. Il‟ina V.P. Glass crystal materials made from mineral and technogenic feedstock from Karelia. Glass and Ceramics. 2007. V. 64. No. 9–10. Pp. 318–321.

11. Karayannis V., Moutsatsou A., Domopoulou A. Fired ceramics 100 % from lignite fly ash and waste glass cullet mixtures. Journal of Building Engineering. 2017. V. 14. Pp. 1–6.

12. Volokitin O.G., Vereshchagin V.I., Volokitin G.G., Skripnikova N.K., Shekhovtsov V.V. Analiz protsessov traditsionnogo i plazmennogo plavleniya zoly TETS [Analysis of traditional and plasma melting of ash from thermal power plants]. Tekhnika i tekhnologiya silikatov. 2016. V. 23. No. 3. Pp. 2–5. (rus)

13. Abzaev Yu.A., Volokitin G.G., Skripnikova N.K., Volokitin O.G., Shekhovtsov V.V. Investigation of the melting of quartz sand by low-temperature plasma. Glass and Ceramics. 2015. V. 72. No. 5–6. Pp. 225–227.

14. Volokitin G.G., Skripnikova N.K., Volokitin O.G., Shekhovtsov V.V., Haysundinov A.I. El-ektrodugovyye i elektroplazmennyye ustroystva dlya pererabotki silikatsoderzhashchikh otkhodov [Electric arc and electroplasma devices for processing silicate waste]. Izvestiya vysshikh uchebnykh zavedenii. Fizika. 2014. V. 57. No. 3-3. Pp. 109–113. (rus)


Review

For citations:


Anshakov A.A., Gauss K.S., Volokitin O.G., Shekhovtsov V.V. MODERN PRODUCTION AND TREATMENT TECHNOLOGIES USING THERMAL PLASMA ENERGY. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(4):135-144. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-4-135-144

Views: 2507


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)