RIGIDITY AND STRENGTH ANALYSIS OF REINFORCED CONCRETE BEAMS BY VARYING ELASTICITY MODULUS
https://doi.org/10.31675/1607-1859-2018-20-4-86-93
Abstract
Relevance: The actual values of the elastic modulus used for manufacturing reinforced concrete products and concrete structures may differ significantly from those given in SNiP 63.13330. It is therefore interesting to estimate the rational value of the elasticity modulus of concrete for a particular design. Purpose: Calculation algorithm is proposed for normal stresses and deformations based on variation of the elasticity modulus of concrete by controlling prescribed and technological factors. Materials and methods: Ordinary concrete grades up to В120 grade with organic and mineral modifiers, reinforced concrete beams, modeling, numerical experiment, beam analysis by normal stresses and deformations. Results: The proposed beam analysis algorithm considers a possible change up to 2 times in the elasticity modulus of concrete. Conclusions: Calculations of the elasticity modulus ensure the beam rigidity, taking into account its reinforcement and cross-sectional parameters and strength for normal stresses at a concrete strength normalization corresponding to the elastic modulus, with regard to prescribed and technological factors.
About the Authors
D. R. MailyanUkraine
DSc, Professor
G. V. Nesvetaev
Ukraine
DSc, Professor
References
1. Mkrtchyan A.M., Mailyan D.R. Raschet zhelezobetonny`x kolonn iz vy`sokoprochnogo betona po nedeformirovannoj sxeme [Reinforced concrete beam analysis by non-deformed scheme]. Nauchnoe obozrenie. 2013. No. 11. Pp. 72–76. (rus)
2. Aksenov V.N., Mailyan D.R., Aksenov N.B. Zhelezobetonny`e kolonny` iz vy`sokoprochnogo betona [Reinforced concrete columns made of high-strength concrete]. Rostov-on-Don, RGSU, 2012. 167 p. (rus)
3. Kubasov A.Yu., Mailyan D.R. K voprosu zakry`tiya texnologicheskix treshhin v zhelezobetonny`x fermax kombinirovanny`m prednapryazheniem armatury` [Closing technological cracks in reinforced concrete girders using combined prestress of reinforcement]. Nauchnoe obozrenie. 2015. No. 10. Pp. 17. (rus)
4. Mailyan D.R., Xunagov V.X. Proektirovanie zhelezobetonny`x konstrukcij ravnogo soprotivleniya [Design of reinforced concrete structures with equal resistance]. Nal`chik, 2015. 176 p. (rus)
5. Kaprielov, S.S., Karpenko N.I., Shejnfel`d A.V., Kuzneczov E.N. O regulirovanii modulya up-rugosti i polzuchesti vy`sokoprochny`x betonov s modifikatorom MB-50S [Control for elasticity modulus and creep of high-strength concretes with MB-50S modifier]. Beton i zhelezobet-on. 2003. No. 6. Pp. 8–12. (rus)
6. Davidyuk A.N., Mailyan D.R., Nesvetaev G.V. Samouplotnyayushhiesya vy`sokoprochny`e i legkie betony` na poristy`x zapolnitelyax dlya e`ffektivny`x konstrukcij [Self-compacting high-strength and lightweight concretes based on lightweight aggregates for efficient structures]. Texnologii betonov. 2011. No. 1–2. Pp. 57. (rus)
7. Nesvetaev G.V., Davidyuk A.N. Samouplotnyayushhiesya betony`: modul` uprugosti i mera polzuchesti [Self-compacting concretes: modulus of elasticity and creep coefficient]. Stroi-tel`ny`e materialy`. 2009. No. 6. Pp. 68–71. (rus)
8. Nesvetaev G.V., Kardumyan G.S. Modul` uprugosti cementnogo kamnya s superplastifikatorami i organomineral`ny`mi modifikatorami s uchetom ego sobstvenny`x deformacij pri tverdenii [Modulus of elasticity of cement stone with superplasticizers and organomineral modifiers]. Beton i zhelezobeton. 2013. No. 6. Pp. 10–13. (rus)
9. Nesvetaev G.V., Vu Le Kuen. Deformacionny`e svojstva betonov klassov V40–V60 iz vy`sokopodvizhny`x smesej na materialax V`etnama [Deformation properties of В40–В60 concretes made of flow mixtures on materials from Vietnam]. Naukovedenie. 2015. V. 7. No. 3 Available: http://naukovedenie.ru/PDF/78TVN315.pdf (rus)
10. Komoxov P.G. (Ed.) Cement, betony`, suxie smesi: Modul` uprugosti. Chast` 1 [Cements, concretes, dry mixes: Elasticity modulus. Pt 1]. St-Petersburg: Professional, 2007. Pp. 282–298. (rus)
11. Yuvaraj L. Bhirud*, Keshav K. Sangle. Comparison of shrinkage, creep and elastic shortening of VMA and powder type self-compacting concrete and normal vibrated concrete. Open Journal of Civil Engineering. 2017. V. 7. No. 1. Pp. 130–140. (rus)
12. Marian Sabau, Traian Onet, Ana Ioana Petean. Hardened properties of self-compacting concrete. Proc. 1st Int. Conf. for PhD Students in Civil Engineering CE-PhD. 2012. V. 1. Pp. 436–442.
13. Salamanova M.Sh., Saidumov M.S., Murtazaeva T.S.A., Khubaev M.S.M. High-quality modified concrete based on mineral additives and superplasticizers of different nature. Innovations and Investments. 2015. No. 8. Pp. 163–166.
14. Okamura H., Ouchi M. Self-Compacting Concrete. Journal of Advanced Concrete Technology. 2003. No. 1. Pp. 5–15.
15. Domone P.L. A review of the hardened mechanical properties of self-compacting concrete. Cement and Concrete Composition. 2007. No. 1. Pp. 1–12.
Review
For citations:
Mailyan D.R., Nesvetaev G.V. RIGIDITY AND STRENGTH ANALYSIS OF REINFORCED CONCRETE BEAMS BY VARYING ELASTICITY MODULUS. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(4):86-93. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-4-86-93