CHANGES IN ULTRASONIC VELOCITY AT HYDROGEN EMBRITTLEMENT OF HIGH-CHROMIUM STEEL
https://doi.org/10.31675/1607-1859-2018-20-1-187-196
Abstract
The paper presents research into changes in the ultrasonic velocity (Rayleigh wave propagation) at plastic deformation of the type 40Kh13 corrosion-resistant high-chromium steel with a sorbitol structure after high-temperature tempering (original state) and after electrolytic hydrogenation saturation for 12 and 24 h. The method implementation for measuring Rayleigh wave propagation includes a periodic generation of square-waves 100 nm long. Measurements are performed at the input of a radiating piezoelectric transducer including the wave propagation over the specimen using a receiving piezoelectric transducer connected to a digital oscilloscope. Measurements show changes not only in the deformation curve at uniaxial tension but also in the dependence between the ultrasonic velocity and deformation.
Keywords
About the Authors
S. A. BarannikovaRussian Federation
Svetlana A. Barannikova - DSc, Professor.
8/2, Akademicheskii Ave., 634021, Tomsk; 2, Solyanaya Sq., 634003, Tomsk
A. G. Lunev
Russian Federation
Aleksei G. Lunev - PhD, Senior Scientist.
8/2, Akademicheskii Ave., 634021, Tomsk
A. P. Malinovskii
Russian Federation
Anatolii P. Malinovskii - PhD, Professor.
2, Solyanaya Sq., 634003, Tomsk
L. B. Zuev
Russian Federation
Lev B. Zuev - DSc, Professor.
8/2, Akademicheskii Ave., 634021, Tomsk
References
1. Song J., Curtin W.A. A nanoscale mechanism of hydrogen embrittlement in metals. Acta Materialia. 2011. V. 59. Pp. 1557–1569.
2. Fuchigami H., Minami H., Nagumo M. Effect of grain size on the susceptibility of martensitic steel to hydrogen related failure. Phil. Mag. Lett. 2006. V. 86. Pp. 21–29.
3. Robertson I.M. The effect of hydrogen on dislocation dynamics. Eng. Frac. Mech. 2001. V. 68. Pp. 671–692.
4. Matsuo T., Yamabe J., Matsuoka S. Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel. International Journal of Hydrogen Energy. 2014. V. 39. Pp. 3542–3551.
5. Koyama M., Springer H., Merzlikin S.V., Tsuzaki K., Akiyama E., Raabe D. Hydrogen embrittlement associated with strain localization in a precipitation-hardened Fe–Mn–Al–C light weight austenitic steel. International Journal of Hydrogen Energy. 2014. V. 39. Pp. 4634–4646.
6. Depover T., Pérez Escobar D., Wallaert E., Zermout Z., Verbeken K. Effect of hydrogen charging on the mechanical properties of advanced high strength steels. International Journal of Hydrogen Energy. 2014. V. 39. Pp. 4647–4656.
7. Mine Y., Koga K., Takashima K., Horita Z. Mechanical characterisation of microstructural evolution in 304 stainless steel subjected to high-pressure torsion with and without hydrogen pre-charging. Materials Science and Engineering: A. 2016. V. 661. Pp. 87–95.
8. Teus S.M., Savvakin D.G., Ivasishin O.M., Gavriljuk V.G. Hydrogen migration and hydrogendislocation interaction in austenitic steels and titanium alloy in relation to hydrogen embrittlement. International Journal of Hydrogen Energy. 2017. V. 42. Pp. 2424–2433.
9. Zhao Y., Seok M., Choi I., Lee Y., Park S., Ramamurty U., Suh J., Jang J. The role of hydrogen in hardening/softening steel: Influence of the charging process. Scripta Materialia. 2015. V. 107. Pp. 46–49.
10. Martin M.L., Dadfarnia M., Orwig S., Moore D., Sofronis P. A microstructure-based mechanism of cracking in high temperature hydrogen attack. Acta Materialia. 2017. V. 140. Pp. 300–304.
11. Koyama M., Akiyama E., Lee Y., Dierk Raabe D., Tsuzaki K. Overview of hydrogen embrittlement in high-Mn steels. International Journal of Hydrogen Energy. 2017. V. 42. Pp. 12706–12723.
12. Doshida T., Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content. Acta Materialia. 2014. V. 79. Pp. 93–107.
13. Djukic M.B., Sijacki Zeravcic V., Bakic G.M., Sedmak A., Rajicic B. Hydrogen damage of steels: A case study and hydrogen embrittlement model. Engineering Failure Analysis. 2015. V. 58. Pp. 485–498.
14. Ding X., Wu X., Wang Y. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer. Ultrasonics. 2014. V. 54. Pp. 914–920.
15. Zuev L.B., Semukhin B.S., Lunev A.G. On the interrelation between plastic-deformation localization and the acoustic properties of aluminum and D16 alloy. Russ. Metall. 2004. V. 3. Pp. 286–292.
16. Murav'ev V.V., Murav'eva O.V., Platunov A.V., Zlobin D.V. Investigations of acoustoelastic characteristics of rod waves in heat-treated steel wires using the electromagnetic-acoustic method. Russ. J. Nondestruct. Test. 2012. V. 48. Pp. 447–456.
17. Vu Q., Garnier V., Chaix J., Payan C., Lott M., Eiras J. Concrete cover characterisation using dynamic acousto-elastic testing and Rayleigh waves. Construction and Building Materials. 2016. V. 114. Pp. 87–97.
18. Hutchinson B., Lundin P., Lindh-Ulmgren E., Lévesque D. Anomalous ultrasonic attenuation in ferritic steels at elevated temperatures. Ultrasonics. 2016. V. 69. Pp. 268–272.
19. Wang B., Wang X., Hua L., Li J., Xiang Q. Mean grain size detection of DP590 steel plate using a corrected method with electromagnetic acoustic resonance. Ultrasonics. 2017. V. 76. Pp. 208–216.
20. Hu F., Shi G., Shi Y. Constitutive model for full-range elasto-plastic behavior of structural steels with yield plateau: Calibration and validation. Engineering Structures. 2016. V. 118. Pp. 210–227.
21. Pelleg J. Mechanical Properties of Metals. Springer: Dordrecht, 2013. 634 p.
22. Lunev A., Bochkareva A., Barannikova S., Zuev L. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation. IOP Conference Series: Materials Science and Engineering. 2016. V. 125. P. 012007.
23. Lunev A., Barannikova S., Nadezhkin M., Zuev L. Acoustic parameters as the material formability criteria. AIP Conference Proceedings. 2016. V. 1783. P. 020139.
24. Zuev L.B., Barannikova S.A., Nadezhkin M.V., Mel'nichuk V.A. Tensile plastic strain localization in single crystals of austenite steel electrolytically saturated with hydrogen. Techn. Phys. Lett. 2011. V. 37. Pp. 793–796.
25. Barannikova S.A., Lunev A.G., Nadezhkin M.V., Zuev L.B. Effect of hydrogen on plastic strain localization of construction steels. Adv. Mater. Res. 2014. V. 880 Pp. 42–47.
26. Barannikova S., Bochkareva A., Lunev A., Shlyakhova G., Li Y., Zuev L. On the plastic flow localization of martensitic stainless steel saturated with hydrogen. AIP Conference Proceedings. 2016. V. 1783. P. 020011.
27. Cottrell A.H. Dislocations and plastic flow in crystals. Oxford University Press, 1953. 223 p.
28. Granato A., Lücke K. Theory of mechanical damping due to dislocations. J. Appl. Phys. 1956. V. 27. Pp. 583–593.
29. Truell R., Elbaum C., Chick B. Ultrasonic methods in solid state physics. New York: Academic Press, 1969. 478 p.
30. Guz' A.N. Uprugie volny v telakh s nachal'nymi napryazheniyami [Elastic waves in solids with initial stresses], in 2 vol. Kiev: Naukova Dumka, 1986. V. 2. 536 p. (rus)
Review
For citations:
Barannikova S.A., Lunev A.G., Malinovskii A.P., Zuev L.B. CHANGES IN ULTRASONIC VELOCITY AT HYDROGEN EMBRITTLEMENT OF HIGH-CHROMIUM STEEL. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(1):187-196. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-1-187-196