Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

LAGRANGIAN METHOD FOR ALGORITHM OPTIMIZATION OF RIBBED THIN PLATES

https://doi.org/10.31675/1607-1859-2018-20-1-140-147

Abstract

The paper presents two iteration algorithms for the equation solution using the method of Lagrange multipliers. It is shown that these iteration algorithms do not converge. For comparison, we use the optimum parameters of a ribbed plate obtained by other methods. The proposed method is based on the specific properties of optimality of ribbed plates formulated as a result of the Lagrange equation analysis. These optimum parameters satisfy each of Lagrange equations. The solution of these equations shows that optimization of ribbed plates is possible only with the use of specific optimality properties.

About the Authors

R. P. Moiseenko
Tomsk State University of Architecture and Building
Russian Federation

Rostislav P. Moiseenko - DSc, Professor.

2, Solyanaya Sq., 634003, Tomsk



O. O. Kondratenko
Tomsk State University of Architecture and Building
Russian Federation

Olga O. Kondratenko - Research Assistant.

2, Solyanaya Sq., 634003, Tomsk



References

1. Lazarev I.B. Osnovy optimal'nogo proektirovaniya konstruktsii. Zadachi i metody [Bases of optimum design. Tasks and methods]. Novosibirsk: SGAPS Publ., 1995. 295 p. (rus)

2. Moiseev N.N., Ivanilov Yu.P., Stolyarova E.M. Metody optimizatsii [Optimization methods]. Moscow: Nauka Publ., 1978. Pp. 352. (rus)

3. Fiacco A.V., McCormick G.P. Nelineinoe programmirovanie. Metody posledovatel'noi bezuslovnoi minimizatsii [Nonlinear programming: sequential unconstrained minimization techniques]. Moscow: Mir, 1972. P. 240. (transl. from Engl.)

4. Moiseenko R.P., Kondratenko O.O. Optimizatsiya pryamougol'nykh rebristykh plastin s ogranicheniem pervoi chastoty sobstvennykh kolebanii pri upravlenii vysotoi i shirinoi poperechnogo secheniya reber [Optimization of rectangular ribbed plates with restriction of the first natural oscillation frequency at control for cross-section height and width]. Izvestiya vuzov. Tekhnologiya tekstil'noi promyshlennosti. 2016. No. 6. Pp. 196–200. (rus)

5. Moiseenko R.P., Kondratenko O.O. Optimizatsiya pryamougol'nykh rebristykh plastin s ogranicheniem pervoi chastoty sobstvennykh kolebanii pri upravlenii vysotoi i shirinoi poperechnogo secheniya [Optimization of rectangular ribbed plates with restriction of the first eigenfrequency under control for cross-section height and width]. Stroitel'naya mekhanika i raschet sooruzhenii. 2017. No. 6. Pp. 42–45. (rus)

6. Guld S. Variatsionnye metody v zadachakh o sobstvennykh znacheniyakh [Variational methods in eigenvalue problems]. Moscow: Mir Publ., 1970. P. 328. (rus)

7. Donnell L.G. Balki, plastiny i obolochki [Beams, plates and shells]. Moscow: Nauka Publ., 1982. P. 568 (transl. from Engl.)

8. Lyakhovich L.S. Metod otdeleniya kriticheskikh sil i sobstvennykh chastot uprugikh system [Separation of elastic systems critical forces and eigenfrequencies]. Tomsk: TSU Publ., 1970. P. 161. (rus)

9. Myshkis A.D. Lektsii po vysshei matematike [Lectures on higher mathematics]. Moscow: Nauka Publ., 1973. P. 640. (rus)

10. Lyakhovich L.S. Osobye svoistva optimal'nykh sistem i osnovnye napravleniya ikh realizatsii v metodakh rascheta sooruzhenii [Special properties of optimum systems and their implementation in structural analysis]. Tomsk: TSUAB Publ., 2009. P. 372. (rus)


Review

For citations:


Moiseenko R.P., Kondratenko O.O. LAGRANGIAN METHOD FOR ALGORITHM OPTIMIZATION OF RIBBED THIN PLATES. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2018;(1):140-147. (In Russ.) https://doi.org/10.31675/1607-1859-2018-20-1-140-147

Views: 837


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)