Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Performance Improvement of Asphalt Concrete Pavements by Fiber Reinforcement

https://doi.org/10.31675/1607-1859-2025-27-6-257-271

EDN: OSPFUR

Abstract

Improvement of asphalt concrete stability, durability, and functionality, is one of the most important challenges in the transport construction. This is due to the need to overcome the rapid pavement deterioration under the influence of increasing traffic load and negative impact of climatic conditions. 

Purpose: The objective of the work is to analyze and summarize research results and develop recommendations regarding the best available, costeffective methods for producing composite asphalt concrete mixtures using polymer fiber reinforcement.

Methodology/approach: To evaluate the polymer fiber reinforcement of asphalt concrete mixtures, much efforts has been done to study the influence of physicochemical properties and chemical composition of materials, fiber size, temperature conditions, and fiber introduction in the mixture. General logical methods (analysis, synthesis, abstraction, generalization, classification and modeling) and general and specific scientific approaches are used in construction materials science.

Research findings: According to the literature, key trends in the development of fiber reinforcement techniques are determined for materials science in the road construction. The first is expanding the range of fiberreinforced materials (organic and inorganic, natural and synthetic). The second is identifying and optimizing methods for fiber introduction in the asphalt concrete mixture during its production from raw materials. The third is studying physicochemical mechanisms underlying the interaction between reinforcing particles and asphalt concrete components and the quality of bitumen, mineral powder, sand, crushed stone and additives.

Value: Implementation of recommendations regarding the most effective methods of fiber reinforcement of asphalt concrete and a regulatory framework for their implementation will improve the road pavement performance. 

About the Authors

V. N. Lukashevich
Tomsk State University of Architecture and Building
Russian Federation

Viktor N. Lukashevich, DSc, Professor

2, Solyanaya Sq., 634003, Tomsk



O. D. Lukashevich
Tomsk State University of Architecture and Building
Russian Federation

Olga D. Lukashevich, DSc, Professor

2, Solyanaya Sq., 634003, Tomsk



References

1. Vasil'ev Yu.E., et al. Innovative Technologies in the Production of Asphalt Concrete Mixtures. Moscow: MADI, 2016. 116 p. (In Russian)

2. Ignat'ev A.A. Additives to Asphalt Concrete. Literature Review. Izvestiya KGASU. 2023; 1 (63): 14–30. DOI: 10.52409/20731523_2023_1_14. EDN: EXDWYX (In Russian)

3. Kotlyarskii E.V. “Durability improvement of road surfaces through the optimization of asphalt concrete structure”. DSc Abstract, Belgorod, 2012. 45 p. (In Russian)

4. Goncharova M.A., Tkacheva I.A. Strength Improvement of Asphalt Concrete Mixtures for repair of Rigid Road Structures. Stroitel'nye materialy. 2023; (1–2): 33–37. DOI: 10.31659/0585430X-2023-810-1-2-33-37 (In Russian)

5. Belyaev K.V. Improvement of asphalt concrete performance characteristics. In: Proc. 2nd Int. Sci. Conf. ‘Basic and Applied Research of Young Scientists’. 2018. Pp. 416–422. (In Russian)

6. Stroev D.A., Chan N.Kh., Gorelov S.V. Intensity Reduction of Plastic Strain by Fiber Reinforcement of Road Construction Materials. Vestnik of Tomsk State University of Architecture and Building. 2011; 1 (30): 192–199. (In Russian)

7. Talantova K., Tolstenev S. Composite as steel fiber-reinforced concrete in road construction. Avtomobil'nye dorogi. 1999; (9): 24–26. (In Russian)

8. Pshenichnykh O.A., Pozhidaeva A.L., Mikhailyuk D.S., et al. Synthetic Fiber Reinforcement of Asphalt Concrete Mixtures. Vestnik Donbasskoi natsional'noi akademii stroitel'stva i arkhitektury. 2021; 1 (147): 80–86. (In Russian)

9. Pshenichnykh O.A., Skorik D.S. Experience in using Fiber-Reinforced Asphalt Concrete in Road Construction. Vestnik Donbasskoi natsional'noi akademii stroitel'stva i arkhitektury. 2020; 1 (141): 121–127. (In Russian)

10. Ketov A.I., Pugin K.G. Improvement of Asphalt Concrete Pavement Characteristics through Reinforcement. Khimiya. Ehkologiya. Urbanistika. 2024; 3: 110–114. (In Russian)

11. Andronov S.Yu., Zadiraka A.A., Diter E.D. Method for Joint Fiber Reinforcement of Asphalt Concrete. Tekhnicheskoe regulirovanie v transportnom stroitel'stve. 2019; 1 (34): 14–20. (In Russian)

12. Beletskii A.V., Nirov T.A. Asphalt Concrete with Increased Shear Resistance with Dispersed Reinforcement of Single- and Two-Component Fiber. Vestnik evraziiskoi nauki. 2024; 16 (5). Available: https://esj.today/PDF/26SAVN524.pdf (In Russian)

13. Lukashevich V.N., Lukashevich O.D. Modification of Conditions and Properties of Dispersed Reinforcing Fiber During Construction and Operation of Asphalt Concrete Pavements. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2023; 25 (3): 185–196. DOI: 10.31675/1607-1859-2023-25-3-185-196. EDN: TQJNLC (In Russian)

14. Bondarev B.A. Karaseva O.V., Sturova V.A., Liventseva A.A. The use of dramix fibre manufactured by bekaert in construction. In: Proc. 2nd All-Russ. Sci. Conf. ‘Modern Problems of Materials Science’. Lipetsk, 2021. Pp. 340–342. EDN: MCPZFQ (In Russian)

15. Pakhomov I.A., Abaidullina T.N. Properties of Asphalt Concrete Modified with Polypropylene Fibre. Vestnik grazhdanskikh inzhenerov. 2015; 1 (48): 152–156. (In Russian)

16. Pugin K.G., Yakontseva O.V., SalakhovaV.K. Polymer Materials as a Structural Element in Asphalt Concrete. Transport. Transportnye sooruzheniya. Ehkologiya. 2021; (4): 29–36. (In Russian)

17. Jin D., Meyer T.K., Chen S., AmpaduBoateng K., Pearce J.M., You Z. Evaluation of Lab Performance of Stamp Sand and Acrylonitrile Styrene Acrylate Waste Composites without Asphalt as Road Surface Materials. Construction and Building Materials. 2022; 338: 127569. DOI: 10.1016/j.conbuildmat.2022.127569. EDN: VMITVO

18. Jianmin Ma, Simon A.M. Effect of Recycled Polyethylene Terephthalate (PET) Fiber on the Fracture Resistance of Asphalt Mixtures. Construction and Building Materials. 2022; 342 (5): 127944. DOI: 10.1016/j.conbuildmat.2022.127944

19. Pugin K.G. Improvement of Compositional Uniformity of Asphalt Concrete Mixtures. Transport. Transportnye sooruzheniya. Ehkologiya. 2025; (1): 43–51. DOI: 10.15593/24111678/2025.01.04. EDN: TYQNQH (In Russian)

20. Bratchun V.I., Pshenichnykh O.A., Romasyuk E.A., et al. Structure Formation of AdsorptionSolvate Layers of Asphalt-Chrysotile Binder on Surface of Mineral Materials of Road Asphalt Concrete. Vestnik Donbasskoi natsional'noi akademii stroitel'stva i arkhitektury. 2022; 1(153): 114–121. EDN: VWEBYO (In Russian)

21. Lukashevich V.N. “Asphalt concrete mixture technology optimised according to its strength properties”. DSc Thesis. Tomsk, 2001. 316 p. (In Russian)

22. Lukashevich V.N., Lukashevich O.D., Mokshin R.I. Structure Formation of Dispersion Hardened Organomineral Mixtures. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2021; 23 (5): 142–150. DOI: 10.31675/1607-1859-2021-23-5-142-150. EDN: AVVUNO (In Russian)

23. Lukashevich V.N., Efanov I.N. Fiber reinforcement Technology of Asphalt Concrete Mixtures with Fibrous Sorbents for Improving Bitumen Properties in Adsorption Layer by Reducing Selective Filtration Intensity of its Components. Vestnik of Tomsk State University of Architecture and Building. 2012; 2 (35): 197–201. EDN: OYATIT (In Russian)

24. Bratchun V.I., Bespalov V.L., Pakter M.K., Romasyuk E.A. Theoretical and Experimental Principles for Producing Modified Road Asphalt Concrete with Increased Durability. Donetsk: "Foliant", 2020. 244 p. (In Russian)

25. Dedyukhin A.Yu., Buldakov S.I. Chrysotile Fiber Reinforcement of Asphalt Concrete Mixtures. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura. 2009; 1 (13): 120–124. EDN: KFPXKV (In Russian)

26. Dedyukhin A.Yu. Fiber-Reinforced Asphalt Concrete. Nauchnyi vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Stroitel'stvo i arkhitektura. 2009; 1 (13): 116–120. (In Russian)

27. Efremov S.V., Lapchenko A.S. Fibre Effect on Physical, Mechanical and Rheological Properties of Asphalt Concrete. Vestnik Donbasskoi natsional'noi akademii stroitel'stva i arkhitektury. 2011; 1 (87): 121–127. EDN: OLYHGX (In Russian)

28. Lukashevich V.N., Vlasov V.A., Lukashevich O.D., Efanov I.N. Fiber Reinforcement Properties of Asphalt Pavements Under Natural and Climatic Conditions. Vestnik of Tomsk State University of Architecture and Building. 2017; 6 (65): 193–200. EDN: ZWJBFH (In Russian)

29. Lukashevich V.N., Efanov I.N., Prokof'eva G.I., Vaks I.V. Investigations of Structural-Mechanical Properties of Fiber Rein-forced Organo-Mineral Materials. Vestnik of Tomsk State University of Architecture and Building. 2015; 6 (53): 177–185. (In Russian)

30. Busel A.V., Chistova T.A., Naumovets A.N. Asphalt Binders with Reinforcing Fibrous Components. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Stroitel'stvo i arkhitektura. 2014; (1): 106–109. EDN: YTRSOD (In Russian)

31. Andronov S.Yu., Artemenko A.A., Kochetkov A.V., Zadiraka A.A. Influence of Basalt Fiber Addition on Physical and Mechanical Properties of Composite Asphalt Concrete Mixtures. Stroitel'nye materialy. 2017; (7): 71–73. (In Russian)

32. Andronov S.Yu., Alferov V.I., Kochetkov A.V. Improvement of Methods of Fiber Addition to Hot and Cold Asphalt Con-crete Mixtures. Vestnik Evraziiskoi nauki. 2020; (2). Available: https://esj.today/PDF/72SAVN220.pdf (In Russian)

33. Guo Q., Li L., Cheng Y., Jiao Y., Xu C. Laboratory Evaluation on Performance of Diatomite and Glass Fiber Compound Modified Asphalt Mixture. Materials and Design. 2015; 66: 51–59. DOI: 10.1016/j.matdes.2014.10.033

34. Muhammad Fawad Rashid, Naveed Ahmad, Ahtsham Ahmed. The effect of using steel fiber on deformation resistance of asphalt concrete. In: Proc 2nd Conf. on Sustainability in Civil Engineering. 2021.

35. Pshenichnykh O.A., Obolenskaya E.V., Voloshchuk A.V., et al. Comparative Analysis of Physical and Mechanical Properties of Two Asbestos Types as Reinforcing Material for Asphalt Concrete Mix. Vestnik Donbasskoi natsional'noi akademii stroitel'stva i arkhitektury. 2024; 1 (165): 63–68. Available: https://donnasa.ru/publish_house/journals/vestnik/2024/20241(165)/st_09_pschenichnyh_obolenskaya_voloshuk_lunin_sheludyakov_zolotin.pdf (accessed November 19, 2025). (In Russian)

36. Xiong R., Fang J., Xu A., Guan B., Liu Z. Laboratory Investigation on the Brucite Fiber Reinforced Asphalt Binder and Asphalt Concrete. Construction and Building Materials. 2015; 83; 44–52. DOI: 10.1016/j.conbuildmat.2015.02.089

37. Zarei M., Akbarinia F., Rahmani Z., et al. Economical and Technical Study on the Effect of Carbon Fiber with High Strength on Hot Mix Asphalt (HMA). Electronic Journal of Structural Engineering. 2020; 20: 6–12. EDN: KTZWVK

38. Abdullin A.I., Emel'yanycheva E.A. Use of Technical Carbon as an Additive to Road Bitumen. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014; (2): 275–278. (In Russian)

39. Assan M., Rashid M., Danish A., Ahmed A. The Effect of Using Jute Fiber on Deformation Resistance of Asphalt Concrete. 2021; 1–6.

40. Geremew A., Jemal A. The Comparative Study on the Performance of Bamboo Fiber and Sugarcane Bagasse Fiber as Modifiers in Asphalt Concrete Production. Heliyon. 2020; 1–8. DOI: 10.1016/j.heliyon.2022.e09842

41. Hui Y., Yiran W., Junfu L., Mei X., Pengrui M., Jie Ji, Zhanping Y. Review on Applications of Lignin in Pavement Engineering: A Recent Survey. Frontiers in Materials. 2021; 8: 803524. DOI: 10.3389/fmats.2021.803524

42. Chen Z., Yi J., Chen Z., Feng, D. Properties of Asphalt Binder Modified by Corn Stalk Fiber. Journal of Construction and Building Materials. 2019; 212: 225–235. DOI: 10.1016/j.conbuildmat.2019.03.329

43. Abdullahi Ahmad Kabiru, Usman Nura, Masirin Mohd, Ahmed Anwar. Reinforcement of Asphalt Concrete Mixture using Recycle Polyethylene Terephthalate Fibre. Indian Journal of Science and Technology. 2016; 9. DOI: 10.17485/ijst/2016/v9i46/107143

44. Guo Q., Li L., Cheng Y., Jiao Y., Xu C. Laboratory Evaluation on Performance of Diatomite and Glass Fiber Compound Modified Asphalt Mixture. Materials & Design. 2015; 66: 51–59. DOI: 10.1016/j.matdes.2014.10.033.

45. Slebi-Acevedo C.J., Lastra-Gonzalez P., Castro-Fresno D., Bueno M. An Experimental Laboratory Study of Fiber-Reinforced Asphalt Mortars with Polyolefin-Aramid and Polyacrylonitrile Fibers. Construction and Building Materials. 2020; 248, 118622. EDN: RBRFZY

46. Lasman I.A. Tokar N.I., Shkabaro D.Yu., et al. Synthetic fibres for dispersed and spatial reinforcement of asphalt concrete pavement. In: Proc. Int. Sci. Conf. ‘Innovations in Construction- 2022’. Bryansk, 2022. Pp. 238–242. (In Russian)

47. Kim M.-J., Kim S., Yoo D.-Y., Shin H.-O. Enhancing Mechanical Properties of Asphalt Concrete using Synthetic Fibers. Construction and Building Materials. 2018; 178: 233–243. DOI: 10.1016/j.conbuildmat.2018.05.070

48. Pakhomov I.A., Abaidullina T.N. Asphalt Concrete Properties Modified with Polypropylene Fibre. Vestnik grazhdanskikh inzhenerov. 2015; 1 (48): 152–156. EDN: TQKGUX (In Russian)

49. Andronov S.Yu. Preparation of Composite Fiber-Reinforced Asphalt Concrete Mixture using Various Methods of Introducing Polyacrylonitrile Fibre into Mixture. Sovremennye naukoemkie tekhnologii. 2016; (4-1): 9–13. EDN :VVXZGX (In Russian)

50. Chernov S.A., Kaklyugin A.V., Nikitina A.N., Golyubin K.D. Influence of Polymer-Disperse Reinforcing Additives on Operational Properties of Asphalt Concrete. Vestnik MGSU. 2017; 12 (6 (105)): 654–660. DOI: 10.22227/1997-0935.2017.6.654-660 (In Russian)

51. Andronov S.Yu., Zadiraka A.A., Trofimenko Yu.A. Influence of Introducing PAN Fibre on Asphalt Concrete Quality. Tekhnicheskoe regulirovanie v transportnom stroitel'stve. 2019; 1 (34): 20–26. EDN: ENWFQQ (In Russian)

52. Efanov N.E., Lukashevich V.N., Piryaev I.V. Influence of Dispersed Reinforcement on Structure Formation in Asphalt Concrete Mixtures. Vestnik of Tomsk State University of Architecture and Building. 2007; 1 (14): 204–209. EDN: JUCZET (In Russian)

53. Rusakov M.N., Ismailov A.M. Styrene-Butadiene-Styrene Polymers for Road Construction in the Russian Federation. Stroitel'stvo unikal'nykh zdanii i sooruzhenii. 2020; (87): 1–13. DOI: 10.18720/CUBS.87.3 (In Russian)

54. Gao Y., Guo Q., Guo Y., Wu P., Meng W., Jia T. Investigation on Reinforced Mechanism of Fiber Reinforced Asphalt Concrete Based on Micromechanical Modeling. Advances in Materials Science and Engineering. 2017; 1–12. DOI: 10.1155/2017/4768718

55. Chernykh D.S. Stroev D.A., Batyrov S.A. Influence of Process Parameters on Polymer FiberReinforced Asphalt-Concrete Properties. Inzhenernyi vestnik Dona. 2016; 4 (43): 150. EDN: YJKTED (In Russian)

56. Nasonova I.G., Lira S.V. Technological Stability of Crushed Stone-Mastic Asphalt Concrete Mixtures Reinforced with Synthetic Fibre. Dorogi i mosty. 2024; 2 (52): 321–346. EDN: AXBJSW (In Russian)


Review

For citations:


Lukashevich V.N., Lukashevich O.D. Performance Improvement of Asphalt Concrete Pavements by Fiber Reinforcement. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2025;27(6):257-271. (In Russ.) https://doi.org/10.31675/1607-1859-2025-27-6-257-271. EDN: OSPFUR

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)