Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Production Methods of Reducing Non-Autoclave Foamed Concrete Shrinkage and Increasing its Quality Class

Abstract

The paper presents research results on foamed concrete with the higher quality level and stability. The production methods of foamed concrete preparation are optimized. It is shown that the introduction of 0,01 wt.% crystalline glyoxal in 28-day age foamed concrete provides 50 % decrease of shrinkage deformation. Also, the average density variation factor decreases from 3,4 to 2,2 %, and the compressive strength decreases from 10,5 to 7,6 %. In the foamed concretes with crystalline glyoxal addition the quality class improves to B0.75 with reserving its D500 average density.

About the Authors

Aleksandr I. Kudyakov
Tomsk State University of Architecture and Building
Russian Federation


Aleksei B. Steshenko
Tomsk State University of Architecture and Building
Russian Federation


Viktoriya V. Konusheva
Tomsk State University of Architecture and Building
Russian Federation


Oleg O. Syrkin
Tomsk State University of Architecture and Building
Russian Federation


References

1. Morgun L.V., Morgun V.N., Smirnova P.V., Batsman M.O. Uchet osobennostei struktury syr'ya v tekhnologii penobetonov [ Structural properties of raw materials in foamed concrete technology]. Coll. Papers ‘Theory and practice of production and application of cellular concrete in construction’. Sevastopol'. 2007. Pp. 202–207. (rus)

2. Udachkin V.I. Malousadochnyi neavtoklavnyi penobeton dlya sbornogo i monolitnogo stroitel'stva: avtoref dis. … kand. tekhn. nauk [Not shrink non-autoclaved aerated concrete for precast and monolithic construction. PhD Abstract]. Moscow, 2000. 7 p. (rus)

3. Merkin A.P. Yacheistye betony: nauchnye i prakticheskie predposylki dal'neishego razvitiya [Cellular concrete: scientific and practical background for further development]. Construction Materials. 1995. No. 2. Pp. 11. (rus)

4. Pukharenko Yu.V. Svoistva i perspektivy primeneniya yacheistogo fibropenobetona [Properties and prospects of cellular fiber foamed concrete]. Populyarnoe betonovedenie. 2006. No 1. Pp. 30–33. (rus)

5. Pinsker V.A., Vylegzhanin V.P. Yacheistyi beton kak ispytannyi vremenem material dlya kapital'nogo stroitel'stva [Foamed concrete is time-tested material for major construction]. Construction Materials. 2004. No. 3. Pp. 44–45. (rus)

6. Shahova L.D. Rol' penoobrazovatelei v tekhnologii penobetonov [The role of foaming agents in foamed concrete technology]. Construction Materials. 2007. No. 4. Pp. 16–20. (rus)

7. Kolomackij A.S. Teploizolyatsionnyi penobeton [Heat-insulating foamed concrete]. Construction Materials. 2002. No. 3. Pp. 18–19. (rus)

8. Pimenova L.N., Kudyakov A.I. Penobeton, modifitsirovannyi silikagelem [Foamed concrete modified with silica gel]. Vestnik of Tomsk State University of Architecture and Building. 2013. No. 2. Pp. 229–233. (rus)

9. Kudyakov A.I., Steshenko A.B. Penobeton dispersno-armirovannyi teploizolyatsionnyi estestvennogo tverdeniya [Heat insulating reinforced air hardened foamed concrete]. Vestnik of Tomsk State University of Architecture and Building. 2014. No. 2. Pp. 127–133. (rus)

10. Girnienė I., Laukaitis A. The effect of the hardening conditions on foam cement concrete strength and phase composition of new formations. Materials Science. 2002. No. 1. Pp. 77–82.

11. Zuhua Z., John L., Provis, Andrew R., Hao W. Geopolymer foam concrete: An emerging material for sustainable construction. Construction and Building Materials. 2014. V. 56. Pp. 113–127.

12. Yakovlev G., Keriene J., Gailius A., Girniene I. Cement based foam concrete reinforced by carbon nanotubes. Materials Science. 2006. V. 12. No. 2. Pp. 147–151.

13. Tkachenko G.A., Izmalkova E.V., Mal'cev N.V. Penobetony na prirodnykh kvartsevykh peskakh [Foamed concretes based on natural quartz sands]. Proc. Int. Conf. ‘Construction’. Rostov-on-Don. 2004. Pp. 47–48. (rus)

14. Gorlenko G.P., Sarkisov Yu.S., Volkov V.A. Protsessy strukturoobrazovaniya v sisteme «tsement– voda» pri vvedenii khimicheskoi dobavki glioksalya [Structure formation in cement-water system after glyoxal introduction]. Russian Physics Journal. 2014. No. 2. Pp. 278–284. (rus)

15. Kudyakov A.I., Steshenko A.B. Study of hardened cement paste with crystalline glyoxal. Key Engineering Materials. 2016. V. 683. Pp. 113–117.

16. Kudyakov A.I., Steshenko A.B. Rannee strukturoobrazovanie penobetonnoi smesi s modifitsiruyushchei dobavkoi [Early structure formation of foamed concrete mix with modifying additive]. Magazine of Civil Engineering. 2015. No. 2. Pp. 56–52. (rus)


Review

For citations:


Kudyakov A.I., Steshenko A.B., Konusheva V.V., Syrkin O.O. Production Methods of Reducing Non-Autoclave Foamed Concrete Shrinkage and Increasing its Quality Class. Vestnik of Tomsk state university of architecture and building. 2016;(5):129-139. (In Russ.)

Views: 524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)