Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Stress-Strain State of Compound Boom of Dragline Excavator

Abstract

The paper deals with the problem of optimization of steel structures of dragline excavators with compound boom. The stages of excavator boom optimization are considered. A computer-aided design system WinMachine is used for these investigations. The intermediate results of the experiment are represented by the allocation map of equivalent stress distribution and their dependence on the installation angle of installation of the bottom boom section. Recommendations are given for the angle of installation of the bottom boom section to reduce maximum stresses.

About the Authors

Maiya B. Ivanenko
Tomsk State University of Architecture and Building
Russian Federation


Vladimir G. Ananin
Tomsk State University of Architecture and Building
Russian Federation


Vladimir A. Slepchenko
Tomsk State University of Architecture and Building
Russian Federation


References

1. Ananin V.G. Issledovaniya dinamiki nagruzheniya rabochego oborudovaniya kar'ernogo ekskavatora v srede ARM WinMachine [Dynamic loading of dragline excavator equipment modeled by WinMachine WS]. Mechanization in Construction. 2013. No 4 (826). Pp. 45–50. (rus)

2. Ananin V.G. Modelirovanie rabochego oborudovaniya kar'ernogo ekskavatora s mekhanicheskim privodom i analiz ego napryazhennogo sostoyaniya v srede ARM WinMachine [Modeling of dragline excavator equipment with mechanical drive and stress-strain analysis using WinMachine WS]. Moscow : SAPR i grafika, 2004. No 4. P. 22. (rus)

3. Nemirovskii P.I., Donskoi V.M. Sposob razrabotki gornodobychnogo zaboya i kar'ernyi kanatnyi ekskavator dlya ego osushchestvleniya [A mining method and dragline excavator for its implementation]. Pat. Rus. Fed. N 2455427C2, 2012, Bul. No. 2. 9 p. (rus)

4. Sapozhnikov A.I., Orlov I.A., Mel'nikov D.A., Khorev P.B. Rabochee oborudovanie odnokovshovogo ekskavatora [Shovel equipment]. Patent application N 2008 144 212 A 2010 Bul. No. 13. 1 p. (rus)

5. Huebner K.H., Dewhirst D.L., Smith D.E., Byrom T.G. The finite element method for engineers. New York; Toronto : John Wiley & Sons, Inc., 2001.

6. Qureshi J.H., Sagar M. The finite element analysis of boom of backhoe loader. International Journal of Engineering Research and Applications. 2012.

7. Zamrii A.A. Proektirovanie i raschet metodom konechnykh elementov v srede ARM Structure 3D [Design and finite element analysis using WS Structure 3D]. Moscow : APM Publ., 2010. 375 p. (rus)

8. Zienkiewicz O.C., Taylor R.L., Zhu J.Z. Finite element method. V. 1. It’s basis & fundamentals. London : Butterworth Heinemann, 2006.

9. Zienkiewicz O.C., Taylor R.L. Finite element method. V. 2. For solid and structural mechanics. London : Butterworth Heinemann, 2006.

10. Zienkiewicz O.C., Taylor R.L., Nithiarasu P. Finite element method. V.3. For fluid dynamics. London : Butterworth Heinemann, 2006.

11. Rombach G.A. Finite element design of concrete structures: Practical problems and their solutions. London : Thomas Telford Publishing, 2004.


Review

For citations:


Ivanenko M.B., Ananin V.G., Slepchenko V.A. Stress-Strain State of Compound Boom of Dragline Excavator. Vestnik of Tomsk state university of architecture and building. 2016;(3):205-210. (In Russ.)

Views: 875


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)