Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Modeling of Temperature Gradient Effect on Stress Distribution During Concrete Hydration

Abstract

The paper presents the results of the finite element modeling (FEM) and analysis of thermal Mises stress distribution in a concrete rod depending on the temperature gradient at a stage of Portland cement hardening. The FEM is represented by a rectangular rod 10´10´45 cm size, the side walls of which are insulated with expanded polystyrene 2 cm thick. One end face of the rod is cooled to T = 273 K, while its opposite end face is heated to various temperatures, namely: 273, 280, 290, 320, 360 and 380 K. The computations are carried out using COMSOL Multi-Physics software system. The analysis shows that the difference in thermal stresses during the hardening of different concrete areas achieves the value that increases with the gradient increase of the external temperature field.

About the Authors

Yuri A. Abzaev
Tomsk State University of Architecture and Building
Russian Federation


Aleksey I. Gnyrya
Tomsk State University of Architecture and Building
Russian Federation


Sergey V. Korobkov
Tomsk State University of Architecture and Building
Russian Federation


Semen A. Tomrachev
Tomsk State University of Architecture and Building
Russian Federation


Kseniya S. Gauss
Tomsk State University of Architecture and Building
Russian Federation


References

1. Pisarenko G.S., Agarev V.A., Kvitka A.L., Popkov V.G., Umanskiy E.S. Soprotivlenie materialov [Strength of materials]. Kiev : Vishcha shkola Publ., 1979. 696 p. (rus)

2. Melan E., Parkus G. Termouprugie napryazheniya, vyzyvaemye statsionarnymi temperaturnymi polyami [Thermoelastic stresses caused by stationary temperature fields]. Moscow : Fizmatgiz Publ., 1958. 166 p. (rus)

3. Runova R.F, Troyan V.V. Analiz termonapryazhennogo sostoyaniya fundamentnoy plity i rekomendatsii po ukhodu za ney pri betonirovanii [Analysis of thermal stress state of base slab and recommendations on its concreting]. Available at: http://beton-profi. ru/matmod.pdf. (rus)

4. Lykov A.V. Yavleniya perenosa v kapillyarno-poristykh telakh [Transfer phenomena in capillary-porous bodies]. Moscow : Stroyizdat Publ., 1954. 296 p. (rus)

5. Lykov A.V., Mikhailov Yu.A. Teoriya perenosa energii i veshchestva [The theory of energy and matter transfer]. Minsk : BSSR Academy of Sciences, 1959. 330 p. (rus)

6. Baza kristallograficheskikh dannykh [Crystallographic database]. Available at: www.comsol.ru/ (rus)

7. Programmnyi kompleks [Software system]. Available at: elcut.ru/ (rus)

8. Varner D.J. Analyses of plastic deformation according to von Mises’ theory with application to the south Silverton area, San Juan County Colorado. Washington : United States Government Printing Office. 1962. Pp. 109–129.

9. Abzaev Yu.A., Gnyrya A.I., Korobkov S.V., Tomrachev S.A., Gauss K.S. Prochnostnye kharakteristiki betonnykh obraztsov pri povyshennykh temperaturakh [Strength properties of concrete specimens at high temperatures]. Vestnik TSUAB. 2014. No. 4. Pp. 186–196. (rus)


Review

For citations:


Abzaev Yu.A., Gnyrya A.I., Korobkov S.V., Tomrachev S.A., Gauss K.S. Modeling of Temperature Gradient Effect on Stress Distribution During Concrete Hydration. Vestnik of Tomsk state university of architecture and building. 2016;(3):129-138. (In Russ.)

Views: 568


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)