Normalization of information parameters of virtual passport for digital building model
https://doi.org/10.31675/1607-1859-2024-26-1-41-55
Abstract
The paper presents the analysis of normalization of information parameters obtained from the building information model (BIM) of a gas boiler room. The main connecting parameters are determined herein. The obtained results are generalized into a single information structure for further creation of the BIM virtual passport.
Methodology: Building information modeling technology involving certification of BIM objects. Key terms are defined by the terminological analysis. The legal framework of existing standards and rules in the field of information modeling is considered to identify general conclusions of implementing the virtual passport.
Research findings: The analysis of stages of filling the digital information model with the data, which are connected with the design work implementation.
Value: The analysis of the material shows that the virtual passport of the object links the information modeling technology, which provides a tool primarily for coordinating design decisions and issuing tasks to related specialties and also enable a correct use of these models throughout the life cycle of the object.
About the Authors
D. S. KulakovRussian Federation
Dmitry S. Kulakov, Research Assistant
113, Leningradskaya Str., 630008, Novosibirsk
D. V. Karelin
Russian Federation
Dmitry V. Karelin, PhD
113, Leningradskaya Str., 630008, Novosibirsk
References
1. Figueiredo K., Hammad A.W., Haddad A. Sustainable construction achieved through life cycle assessment: methodology, limitations and the way forward. Encyclopedia of Renewable and Sustainable Materials. 2020; (4): 576–583. DOI: 10.1016/B978-0-12-803581-8.11360-8
2. Efimov K.V., Belyakov S.I. Analysis of topical issues of the national project “Housing and Urban Environment”. Journal of Economy and entrepreneurship. 2019; 9 (110): 458−461. (In Russian)
3. Khripko T.V. Effectiveness of life cycle management of projects using information modeling. Industrial and Civil Engineering. 2019; 9: 24−29. DOI: 10.33622/0869-7019.2019.09.24-29 (In Russian)
4. Antonopoulou K., Begkos C. Strategizing for digital innovations: Value propositions for transcending market boundaries. Technological Forecasting and Social Change. 2020; 156: 120042. DOI: 10.1016/j.techfore.2020.120042
5. Kulakov D.S., Mordvov A.A., Karelin D.V. Virtual passport of construction objects as harbinger of the fourth industrial revolution in construction. In: Proc. Sci. Conf. ‘Intellectual Potential of Siberia’, D.O. Sokolova, Ed., 2021. Pp. 197−199. (In Russian)
6. Lu W., Lai C.C., Tse T. BIM implementation strategies, prospects, and challenges. BIM and big data for construction cost management. 2018. Pp. 34–52. DOI: 10.1201/9781351172325-3
7. Smith P. BIM Implementation − Global strategies. Procedia Engineering. 2014; 85: 482–492. DOI: 10.1016/j.proeng.2014.10.57
8. Schwab K.M. Die Vierte Industrielle Revolution. Eksmo, 2016. 208 p. (Russian translation)
9. Jolanta Š., Pupeikis D. Review of BIM implementation in higher education. Journal of Sustainable Architecture and Civil Engineering. 2018; 22 (1). DOI: 10.5755/j01.sace.22.1.21116
10. Gusakova E.A., Ovchinnikov A.N. Prospects for the life cycle modeling of a capital construction facility using information flows. Vestnik MGSU. 2020; 15 (8): 1191−1200. (In Russian)
11. Gusakova E.A., Volkov A.A., Ovchinnikov A.N. Development of programming environment for information flows of building lifecycle. In: Proc. All-Russ Sci. Conf. ‘Construction System Engineering. Cyberphysical Building Systems’. Moscow: MGSU, 2019. Pp. 51−57. (In Russian)
12. Jasiński A. Impact of BIM implementation on architectural practice. Architectural Engineering and Design Management. 2021; 17 (5–6): 447–457. DOI: 10.1080/17452007.2020.1854651
13. Oraee M., Hosseini M.R., Edwards D.J., Li H., Papadonikolaki E., Cao D. Collaboration barriers in BIM-based construction networks: A conceptual model. International Journal of Project Management. 2019; 37 (6): 839–854. DOI: 10.1016/j.ijproman.2019.05.004
14. Bachurina S.S., Golosova T.S. Investment component in BIM implementation projects. Vestnik MGSU, 2016; (2): 126−134. (In Russian)
15. Topolyan M.R. Territory life: Horizontal, vertical and diagonal dynamics of development. Teoreticheskaya ekonomika. 2018; 4 (46): 171−177. Available: https://elibrary.ru/item.asp?id=36544469 (In Russian)
16. Hasan A.N., Rasheed S.M. The benefits of and challenges to implement 5D BIM in construction industry. Civil Engineering Journal. 2019; 5 (2): 412. DOI: 10.28991/cej-2019-03091255
17. Smith D., Tardif M. BIM implementation strategies. Building Information Modeling. 2009. Pp. 27–55. DOI: 10.1002/9780470432846.ch2
18. Dadmehr N., Coates S. Consultative approach to BIM implementation. 14th International Postgraduate Research Conference. 2020. Available: https://salford-repository.worktribe.com.utput/1352574/consultative-approach-to-bim-implementation
19. Sampaio A.Z. Project management in office: BIM implementation. Procedia Computer Science. 2022; 196: 840–847. DOI: 10.1016/j.procs.2021.12.083
20. Fedorin M.D. BIM-technologies as organizational and managerial innovation in the construction sector. Aktual'nye voprosy sovremennoi ekonomiki. 2019; (6-2): 143−148. Available: https://elibrary.ru/item.asp?id=41763450 (In Russian)
Review
For citations:
Kulakov D.S., Karelin D.V. Normalization of information parameters of virtual passport for digital building model. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2024;26(1):41-55. (In Russ.) https://doi.org/10.31675/1607-1859-2024-26-1-41-55