Verification analysis for quality control of load-bearing superstructures (Kyzyl)
https://doi.org/10.31675/1607-1859-2023-25-6-78-88
EDN: YNXOYO
Abstract
It is currently relevant to perform the quality control of load-bearing superstructures using verification calculations, which provide strength, rigidity and crack resistance of elements.
Purpose: The development of analytical and numerical methods to evaluate bendable reinforced concrete elements of a ribbed floor slab.
Methodology/approach: Well-known normative methods for the strength analysis of reinforced concrete structures; comparison of analytical and numerical results obtained in the LIRA software package.
Research findings: Well-known formulas for bending elements are used for static calculations. The analysis of the limit state of the floor slab using analytical and numerical methods allows assessing the structural state with sufficient accuracy. The structural analysis shows some discrepancies, which require correction in the future.
Originality/value: numerical strength analysis of bent reinforced concrete elements.
About the Authors
A.-Kh. В. Kaldar-oolRussian Federation
Anai-Khaak B. Kaldar-ool, PhD
36, Lenin Str., 667000, Kyzyl, the Republic of Tuva
О. А. Dongak
Russian Federation
Оrlan A. Dongak, Undregraduate Student
36, Lenin Str., 667000, Kyzyl, the Republic of Tuva
References
1. Gorodetsky A.S., Nazarov Yu.P., Zhuk Yu.N., Simbirkin V.N. Quality improvement of structural analysis in STARK ES and LIRA. Informatsionnyi vestnik Mosoblgosekspertizy. 2005; 1 (8): 42–49. (In Russian)
2. Kulikova O.Yu., Vasiliev A.S. Modeling of ribbed floor slabs in LIRA CAD system. Vestnik Priamurskogo gosudarstvennogo universiteta. 2018; 1 (30): 49–54. EDN YODZEL (In Russian)
3. Kerzhentsev O.B. Strength and deformation characteristics of reinforcement with one-sided damages. In: Improvement of Calculation Methods and Investigation of New Types of Reinforced Concrete Structures. Saint-Petersburg, 1999. Pp. 46–50. (In Russian)
4. Stavrov G.N., Kataev V.A., Gunin S.O., Simchenkov S.S. Dynamic calculation of plate structures with local damages. In: Improvement of Calculation Methods and Investigation of New Types of Reinforced Concrete Structures. Saint-Petersburg, 1999. Pp. 75–82. (In Russian)
5. Michał D., Jacek Ś. Design aspects of the safe structuring of reinforcement in reinforced concrete bending beams. Procedia Engineering. 2017; 172: 211–217. DOI: 10.1016/j.proeng.2017.02.051
6. Herranz J.P., Maria H.S., Gutiérrez S., Riddell R. Optimal strut-and-tie models using full homogenization optimization method. ACI Structural Journal. 2012; 109 (5): 605–613. DOI: 10.14359/51684038
7. Garstecki A., Glema A., Ścigałło J. Optimal design of reinforced concrete beams and frames. Computer Assisted Mechanics and Engineering Sciences. 1996; 3 (3): 223–231.
8. Amin A., Gilbert R.I. Instantaneous crack width calculation for steel fiber-reinforced concrete flexural members. ACI Structural Journal. 2018; 115 (2): 535–542. DOI:10.14359/51701116
9. Szeptyński P. Comparison and experimental verification of simplified one-dimensional linear elastic models of multilayer sandwich beams. Composite Structures. 2020; 214: 1–13. DOI: 10.1016/j.compstruct.2020.112088
10. Opbul E.K., Dmitriev D.A., Vedernikova A.A. Calculation of bending of steel-fiber-reinforced concrete members by a nonlinear deformation model with the use of iteration procedures. Mechanics of Composite Materials. 2018; 54 (5): 379–394. DOI:10.1007/s11029-018-9769-x
11. Opbul E.K., Ondar E.E., Kaldar-ool A-H.B. Strength calculation of fiber-reinforced concrete bending elements using three-linear diagram of tensile deformation. Nauchnoe obozrenie. 2016 (14): 100–106. (In Russian)
12. Opbul E.K., Ondar E.E., Kaldar-ool A-H.B. Deformation models for strength analysis of bending steel concrete elements. Vestnik Tuvinskogo gosudarstvennogo universiteta, Vol. 3. 2020; 58 (1): 6–22. (In Russian)
13. Opbul E.K., Kaldar-ool A-H.B. Practical application of nonlinear deformation model in strength analysis of short reinforced concrete elements in oblique off-center. Vestnik Tuvinskogo gosudarstvennogo universiteta, Vol. 3. 2022; 1 (90): 34–48. (In Russian)
14. Opbul E.K., Kaldar-Ool A-Kh.B., Le Kuang Khyui. Deformation modeling of bending element strength in MATLAB. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2022; 24 (4): 110−129. DOI: 10.31675/ 1607-1859-2022-24-4-110-129 (In Russian)
15. Wróblewski R., Ignatowicz R., Gierczak J. Influence of shrinkage and temperature on a composite pretensioned – Reinforced concrete structure. Procedia Engineering. 2017; 193: 96–103. DOI: 10.1016/j.proeng.2017.06.191
16. Zolotarev V.P. Reinforced concrete structures: Calculation and construction. Saint-Petersburg, 2007. 62 p. (In Russian)
17. Opbul E.K., Kaldar-ool A-H.B. Reinforced concrete structures: Calculation and construction. Kyzyl, 2022. 128 p. (In Russian)
18. Ivanov-Dyatlov I.G., Dellos K.P., Ivanov-Dyatlov A.I. Building constructions. V.N. Baikov, G.I. Popov, Eds., 2nd ed., Moscow: Vysshaya Shkola, 1986. 543 p. (In Russian)
19. Romashkina M.A., Titok V.P. LIRA-Sapr® User Manual. Teaching examples. 2018. 254 p. Available: https://rflira.ru/files/lira-sapr/Book_LIRA_SAPR_2018.pdf (accessed October 13, 2023). (In Russian)
Review
For citations:
Kaldar-ool A.В., Dongak О.А. Verification analysis for quality control of load-bearing superstructures (Kyzyl). Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2023;25(6):78-88. (In Russ.) https://doi.org/10.31675/1607-1859-2023-25-6-78-88. EDN: YNXOYO