Spectral pyrometry of non-metallic materials at plasma heating, melting and cooling (Tomsk)
https://doi.org/10.31675/1607-1859-2023-25-5-95-107
Abstract
Spectral pyrometry of non-metallic materials under plasma heating, melting and cooling is used in nanotechnology, medicine, energy, metallurgy and other industries, where accurate temperature control is required during processing various materials.
Purpose: The aim of this work is to create new spectral pyrometry technique for temperature measurement in difficult conditions of material processing and synthesis, such as plasma heating, melting and cooling of non-metallic materials.
Methodology/approach: Small-sized spectrometers for diagnostics of heating, melting and cooling of the quartz target using the plasma jet. HPCS300 Mini Spectrometer with the wavelength range of 380 to 780 nm is used to determine the color temperature of the reference radiation source and for fiber optic calibration. The STS-VIS Microspectrometer based on a 1024×1 element CCD photodetector array with the wavelength range of 350 to 800 nm is used to record the emission spectrum of the object.
Research findings: Improvement of production processes, fuel and material cost reduction, increase in the efficiency of plants and equipment, reliability and quality improvement of the final product.
Value: During the plasma jet and quartz target interaction, three stages are observed: surface deformation, stable temperature of heating, and cooling of the condensed material with phase-transition points of liquid–pyroplastic–solid states.
About the Author
V. V. ShekhovtsovRussian Federation
Valentin V. Shekhovtsov, PhD, Assistant Lecturer
634003
2, Solyanaya Sq.
Tomsk
References
1. Magunov A.N. Spectral pyrometry. Moscow: Fizmatlit, 2012. 248 p. (In Russian)
2. Magunov A.N., Zakharov A.O., Lapshinov B.A. Measurements of nonstationary temperatures by the spectral pyrometry method. Instruments and Experimental Techniques. 2012; 55: 134–139. (In Russian)
3. Magunov A.N. Spectral pyrometry of objects with nonuniform temperature. Technical Physics. 2010. 55: 991–995.
4. Araújo A. Multi-spectral pyrometry – A review. Measurement Science and Technology. 2017. 28: 082002. DOI: 10.1088/1361-6501/aa7b4b
5. Dolmatov A.V., Milyukova I.V., Gulyaev P.Y. Investigation of structure formation in thin films by means of optical pyrometry. Journal of Physics: Conference Series. 2019. 1281(1): 012010. DOI: 10.1088/1742-6596/1281/1/012010 (In Russian)
6. Fu T., Liu J., Duan M., Li S. Subpixel temperature measurements in plasma jet environments using high-speed multispectral pyrometry. Journal of Heat Transfer. 2018; 140 (7): 071601. DOI: 10.1115/1.4038874
7. Muller M., Fabbro R. Temperature measurement of laser heated metals in highly oxidizing environment using 2D single-band and spectral pyrometry. Journal of Laser Applications. 2012. 24 (2): 1–11. DOI: 10.2351/1.3701400
8. Sotnikova G.Y., Alexandrov S.A., Voronin A.V., Urzhumtsev N.A. Two-color pyrometry methods for measuring the surface temperature of materials exposed to a plasma jet. Journal of Communications Technology and Electronics. 2022. 67: 79–83. DOI: 10.1088/0022-3735/20/6/008
9. Leonova K., Britun N., Konstantinidis S. Target heating and plasma dynamics during hot magnetron sputtering of Nb. Journal of Physics D: Applied Physics. 2022. 55 (34): 345202. DOI: 10.1088/1361-6463/ac72d0
10. Chaplygin A.V., Gordeev A.N. Heat transfer and flow visualization experiments for plasma jets issuing from slit nozzles. AIP Conference Proceedings. 2021. 2351: 030067. DOI: 10.1063/5.0052124
11. Volodin L.Y., Kamrukov A.S. Optical emission study of plasma vortex rings at atmospheric pressure air. Journal of Physics: Conference Series. 2019. 1393(1): 012063. DOI: 10.1088/1742-6596/1393/1/012063
12. Coleman J.E. A spectral pyrometer to spatially resolve the blackbody temperature of a warm dense plasma. Review of Scientific Instruments. 2016. 87(12): 123113. DOI: 10.1063/1.4973433
13. Badie J.M., Bertrand Ph., Flamant G. Temperature distribution in a pilot plasma tundish: Comparison between plasma torch and graphite electrode systems. Plasma Chemistry and Plasma Processing. 2001. 21 (2): 279–299. DOI:10.1023/A:1007004532610
14. Shekhovtsov V.V., Skripnikova N.K., Kunts O.A. Thermal plasma sintering of forsterite ceramics. Journal of Construction and Architecture. 2023; 25(1): 166–175. DOI:10.31675/1607-1859-2023-25-1-166-175 (In Russian)
15. Shekhovtsov V.V., Volokitin O.G., Ushkov V.A., Zorin D.A. Plasma melting of glass ceramics of the MgO–SiO2 system. Pisma v ZhTF. 2022; 48 (24): 15–18. DOI: 10.21883/PJTF.2022.24.54017.19278 (In Russian)
16. Shekhovtsov V.V., Skripnikova N.K., Volokitin O.G., Gafarov R.E. Synthesis of mullitecontaining ceramics in a low-temperature plasma. Glass Physics and Chemistry. 2022; 48 (5): 630–634. DOI: 10.31857/S0132665121100619. EDN: UHKROE
17. Shekhovtsov V.V., Skripnikova N.K., Ulmasov A.B. Synthesis of aluminum-magnesian ceramics MgAl2O3 in thermal plasma environment. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2022; 24 (3): 138–146. DOI: 10.31675/1607-1859-2022-24-3-138-146 (In Russian)
18. Shekhovtsov V.V. MgAl2O4-based glass ceramics synthesized by thermal plasma melting. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2023; 25 (3): 151–161. DOI: 10.31675/1607-1859-2023-25-3-151-161 (In Russian)
Review
For citations:
Shekhovtsov V.V. Spectral pyrometry of non-metallic materials at plasma heating, melting and cooling (Tomsk). Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2023;25(5):95-107. (In Russ.) https://doi.org/10.31675/1607-1859-2023-25-5-95-107