Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Strength and stability of composite concrete and pipe-concrete structures under static load

https://doi.org/10.31675/1607-1859-2023-25-2-141-153

Abstract

The existing regulatory framework and imperfect calculation methods hinder the widespread use of pipe-concrete structures, which have great potential for industrial and civil facilities requiring small cross-sections of load-bearing elements. In order to solve this problem, a series of experiments is conducted to study the behavior of various combinations of steel and concrete materials under static load. Stress-strain state of composite and pipeconcrete structures is investigated. The analysis is given to the bearing capacity of test specimens. The critical load of specimen fracture is calculated, the bearing capacity loss and fracture are determined, deformation diagrams are suggested herein. The comparative analysis of bearing capacity of test specimens is conducted.
The analysis of experimental investigations shows the non-linear increase of bearing capacity during the joint operation of steel shell and reinforced concrete core of the pipe-concrete element, and advantages of pipe-concrete structures over conventional structures.

About the Authors

V. I. Erofeev
Mechanical Engineering Research Institute RAS, Branch of the Institute of Applied Physics RAS
Russian Federation

Vladimir I. Erofeev, DSc, Director

85, Belinsky Str., 603024, Nizhny Novgorod, Russia 



P. A. Khazov
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

Pavel A. Khazov, PhD, A/Professor

65, Il'inskaya Str., 603950, Nizhny Novgorod, Russia 



A. K. Sitnikova
Nizhny Novgorod State University of Architecture and Civil Engineering
Russian Federation

 Anna K. Sitnikova, Student 

65, Il'inskaya Str., 603950, Nizhny Novgorod, Russia 



References

1. Kikin A.I., Sanzharovskij R.S, Trull' V.A. Steel pipes filled with concrete. Мoscow: Stroiizdat, 1974. 144 p. (In Russian)

2. Akaev A.I., Magomedov M.G., Pajzulaev М.М. Construction of earthquake-resistant buildings made of pipe concrete. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki. 2017; 44 (1): 138–149. DOI: 10.21822/2073-6185-2017-44-1-138-149. (In Russian)

3. Ovchinnikov I.I., Ovchinnikov I.G., CHesnokov G.V., Mihaldykin E.S. Calculation of pipeconcrete structures with a shell made of different materials. Part 2. Strength analysis of pipe concrete structures. Naukovedenie. 2015. 7 (4); 91. Available: http://naukovedenie.ru/PDF/02TVN116.pdf. DOI: 10.15862/112TVN415. (In Russian)

4. Duvanova I.A., Sal'manov I.D. Concrete filled steel tubes in the construction of high-rise buildings and structures. Stroitel'stvo unikal'nyh zdanij i sooruzheni. 2014; 6 (21): 89–103. (In Russian)

5. Afanas'ev A.A., Kurochkin A.V. Concrete filled steel tubes for the construction of frame buildings. Academia. Arhitektura i stroitel'stvo. 2016; (2): 113–118. (In Russian)

6. Morino S., Tsuba K. Design and construction of concrete-filled steel tube column system in japan. Earthquake and Engineering Seismology. 2005; 1 (4): 51–73.

7. Lehman D.E., Kuder K.G., Gunnarrson A.K., Roeder C.W., Berman J.W. Circular concretefilled tubes for improved sustainability and seismic resilience. Journal of Structural Engineering. 2015; 141. DOI: 10.1061/(ASCE)ST.1943-541X.0001103.

8. Li P., Zhang T., Wang C. Behavior of concrete-filled steel tube columns subjected to axial compression. Advances in Materials Science and Engineering. 2018: 1–15. DOI: 10.1155/2018/4059675.

9. Lu Y., Na Li, Li S., Liang H. Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials. 2015; (95): 74–85. DOI: 10.1016/j.conbuildmat.2015.07.114.

10. Dai X.H., Lam D., Jamaluddin N. Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Structures. 2014; (77): 26–35. DOI: 10.1016/j.tws.2013.11.015.

11. Lazovic Radovanovic M.M., Nikolic J.Z., Radovanovic J.R., Kostic S.M. Structural behaviour of axially loaded concrete-filled steel tube columns during the top-down construction method. Applied Sciences. 2022; 12 (8): 3771. DOI: https://doi.org/10.3390/app12083771.

12. Dundu M. Compressive strength of circular pipe-concrete columns. Thin-Walled Structures. 2012; (56): 62–70. DOI: 10.1016/j.tws.2012.03.008.

13. Manikandan K.B., Umarani C. Understandings on the performance of concrete-filled steel tube with different kinds of concrete infill. Advances in Civil Engineering. 2021; (2021): 12. DOI: https://doi.org/10.1155/2021/6645757.

14. Rimshin V.I., Semenova M.N., Shubin I.L., et al. Studies of the bearing capacity of noncentrally compressed concrete filled steel tubes. Stroitel'nye materialy. 2022; (6): 8–14. DOI 10.31659/0585-430X-2022-803-6-8-14. (In Russian)

15. Rimshin V.I., Krishan A.L., Astaf'eva M.A., et al. Bearing capacity of centrally compressed pipe concrete structures. Zhilishchnoe stroitel'stvo. 2022; (6): 33–38. DOI 10.31659/0044-4472-2022-6-33-38. (In Russian)

16. Krishan A.L., Surovcov M.M. Experimental studies of strength of flexible pipe concrete structures. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova. 2013; 1 (41): 90–92. (In Russian)

17. Krishan A.L. Concrete filled steel tubes for multi-storey buildings. Stroitel'naya mekhanika inzhenernyh konstrukcij i sooruzhenij. 2009; (4): 75–80. (In Russian)

18. Krishan A.L., Rimshin V.I., Rahmanov V.A., et al. Bearing capacity of short round-section pipe concrete. Izvestiya vysshih uchebnyh zavedenij. Tekhnologiya tekstil'noj promyshlennosti. 2017; 4 (370): 220–225. (In Russian)

19. Krishan A.L., Astafeva M.A., Rimshin V.I., et al. Compressed reinforced concrete elements bearing capacity of various flexibility. Lecture Notes in Civil Engineering. 2022; (182): 283–291. DOI: 10.1007/978-3-030-85236-8_26.

20. Tamrazyan A.G., Manaenkov I.K. Testing of small diameter pipe-concrete samples with high reinforcement coefficient. Stroitel'stvo i rekonstrukciya. 2017; 4 (72): 57–62. (In Russian)

21. Khazov P.A., Erofeev V.I., Lobov D.M., Sitnikova A.K., Pomazov A.P. Experimental study of strength of pipe-concrete small-sized sections. Privolzhskij nauchnyj zhurnal. 2021; (3): 36–43. (In Russian)

22. Wang J., Sun Q., Li J. Experimental study on seismic behavior of high-strength circular pipeconcrete thin-walled columns. Engineering Structures. 2019; (182): 403–415. DOI: 10.1016/j.engstruct.2018.12.098.

23. Kanishchev R.A. Analysis of local stability of rectangular pipe-concrete structures. Inzhenerno-stroitel'nyj zhurnal. 2016; 4 (64): 59–68. (In Russian)

24. Belyj G.I., Vedernikova A.A. Strength and stability of pipe-concrete structures using inverse numerical-analytical method. Vestnik grazhdanskih inzhenerov. 2021; 2 (85): 26–35. DOI 10.23968/1999-5571-2021-18-2-26-35. (In Russian)

25. Lapshin A.A., Khazov P.A., Kozhanov D.A., Lihacheva S.Yu. Strength and stability of composite steel-reinforced concrete elements. Privolzhskij nauchnyj zhurnal. 2021; (3): 9–16. (In Russian)

26. Nesvetaev G.V., Rezvan I.V. Strength of pipe-concrete structures. Fundamental'nye issledovaniya. 2011; (12-3): 580–583. (In Russian)


Review

For citations:


Erofeev V.I., Khazov P.A., Sitnikova A.K. Strength and stability of composite concrete and pipe-concrete structures under static load. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2023;25(2):141-153. (In Russ.) https://doi.org/10.31675/1607-1859-2023-25-2-141-153

Views: 186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)