Preview

Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture

Advanced search

Thermal field control in heated concrete mixture

https://doi.org/10.31675/1607-1859-2022-24-6-139-149

Abstract

Direct electric preheating of concrete mixture (DEPC), which significantly improves the energy efficiency of thermal curing stage, is mostly used in winter concreting and is promising for application in precast concrete production. However, to date, DEPC is not fully utilized. One of its limitations is the temperature difference in the heated volume. The paper proposes methods and means of achieving the uniform temperature field distribution in the heated concrete mixture. The proposed method includes the replacement of plate electrodes by a group of independently controlled electrodes of a smaller size, that makes the system flexible and capable of controlling the electric and, consequently, thermal field. The paper describes the equipment, principles of constructing the algorithm for the heating process control program. 

About the Authors

M. I. Batyuk
Тоmsk State University of Architecture and Building
Russian Federation

Mikhail I. Batyuk, Junior Scientist

2, Solyanaya Sq., 634003, Tomsk



B. S. Vodnev
Тоmsk State University of Architecture and Building
Russian Federation

Bogdan S. Vodnev, Research Engineer

2, Solyanaya Sq., 634003, Tomsk

  


A. I. Gnyrya
Тоmsk State University of Architecture and Building
Russian Federation

Aleksey I. Gnyrya, DSc, Professor

2, Solyanaya Sq., 634003, Tomsk

  


S. V. Korobkov
Тоmsk State University of Architecture and Building
Russian Federation

Sergey V. Korobkov, PhD, A/Professor

2, Solyanaya Sq., 634003, Tomsk

  


V. Ya. Ushakov
National Research Тоmsk Polytechnic University
Russian Federation

Vasily Ya. Ushakov, DSc, Professor

30, Lenin Ave., 634050, Tomsk




References

1. Cecini D., Austin S.A., Cavalaro S., Palmeri A. Accelerated curing of steel–fibre reinforced concrete. Construction and Building Materials. 2018. V. 189. Pp. 192−204.

2. Tayfun Uygunoglu, Ismail Hocaoglu. Effect of electrical curing application on setting time of concrete with different stress intensity. Construction and building materials. 2018. V. 162. Pp. 298−305.

3. Wilson J.G., Gupta N.K. Equipment for the investigation of the accelerated curing of concrete using direct electrical conduction. Measurement. 2004. V. 35. Pp. 243−250.

4. Kafry I.D. Direct electric curing of concrete: Basic design, whittle publishing services, 1993. 96 p.

5. Heritage I. Direct electric curing of mortar and concrete. PhD Thesis. UK, Edinburg: Naiper University, 2001. 294 p.

6. Fedosov S.V., Krasnoselskikh N.V., Korovin O.V., Sokolov A.M. Elektroteplovaya obrabotka zhelezobetonnykh izdelii tokami povyshennoi chastoty v usloviyakh malykh predpriyatii [Electric thermal treatment of reinforced concrete products with high-frequency currents at small production enterprises]. Stroitel'nye materialy. 2014. No. 5. Pp. 8−14. (rus)

7. Fedosov S.V., Sokolov A.M., Krasnosel'skikh N.V., Kuznetsov A.N. Sostoyanie i perspektivy primeneniya elektroteplovoi obrabotki stroitel'nykh materialov i izdelii tokami povyshennoi chastoty [Application of electric thermal treatment of building materials and products with high frequency currents]. In: Sbornik nauchnykh statei Pervykh Mezhdunarodnykh Lykovskikh nauchnykh chtenii (Coll. Papers in memory of Lykov). Kursk: Universitetskaya kniga, 2015. Pp. 291−299. (rus)

8. Kovtun M., Ziolkowski M., Shekhovtsova J., Kearsley E. Direct electric curing of alkaliactivated fly ash concretes: a tool for wider utilization of fly ashes. Journal of Cleaner Production. 2016. V. 133. Pp. 220−227.

9. Zhao R.H., Tuan C.Y., Xu A., Fan D.B. Conductivity of ionically-conductive mortar under repetitive electrical heating. Construction and Building Materials. 2018. V. 173. Pp. 730–739.

10. Trembitskii S.M. Energosberegayushchie tekhnologii izgotovleniya zhelezobetonnykh izdelii i konstruktsii [Energy-saving technologies for manufacture of reinforced concrete products and structures]. Beton i zhelezobeton. 2004. No. 6(531). Pp. 23−26. (rus)

11. Titov M.M., Vlasov V.A., Ryazanov A.V., Yuzhakov I.V. Sovershenstvovanie oborudovaniya dlya predvaritel'nogo elektrorazogreva betonnoi smesi [Equipment improvement of electric pre-heating of concrete mixture]. Proektirovanie i stroitel'stvo v Sibiri. 2007. No. 1(37). Pp. 32−36. (rus)

12. Gnyrya A.I., Titov M.M., Kuznetsov S.M. Kompleksnaya otsenka nadezhnosti primeneniya povtornogo bunkera dlya elektrorazogreva betonnyh smesei [Integrated reliability assessment of rotary bunker for the electric heating of concrete mixes]. Izvestiya vysshih uchebnykh zavedenii. 2013. No. 6 (654). Pp. 43−51. (rus)

13. Gnyrya A.I., Titov M.M., Kuznetsov S.M. Sovershenstvovanie ustroistv predvaritel'nogo elektrorazogreva betonnykh smesei [Improvement of devices for electric pre-heating of concrete mixtures]. Stroitel'nye i dorozhnye mashiny. 2011. No. 2. Pp. 20−25. (rus)

14. Titov M.M., Gnyrya A.I., Kuznetsov S.M. Sovershenstvovanie ustroistv dlya predvaritel'nogo elektrorazogreva betonnykh smesei [Improvement of devices for electric pre-heating of concrete mixtures]. Mekhanizatsiya stroitel'stva. 2010. No. 12. Pp. 7−11. (rus)

15. Batyuk M.I., Ushakov V.Ya., Gnyrya A.I., Krasnyatov Yu.A. Sposob ravnomernogo razogreva betonnoy smesi [Uniform heating of concrete mixture]. Patent Russ. Fed. N 2723313 C1, 2020. 12 p. (rus)


Review

For citations:


Batyuk M.I., Vodnev B.S., Gnyrya A.I., Korobkov S.V., Ushakov V.Ya. Thermal field control in heated concrete mixture. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2022;24(6):139-149. (In Russ.) https://doi.org/10.31675/1607-1859-2022-24-6-139-149

Views: 232


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1607-1859 (Print)
ISSN 2310-0044 (Online)