Analiz izmeneniya koeffitsienta sherokhovatosti rusla maloi reki v zadannom stvore (na primere r. Chernoi) [Roughness coefficient meas-urements of the Chernaya River channel]
https://doi.org/10.31675/1607-1859-2022-24-1-188-201
Abstract
The paper presents the determination of the roughness coefficient of the minor river channel, since one of the main design parameters depends on the minor stream, required for a substantiation of design decisions. In accordance with the regulatory documents of the Russian Federation, the roughness coefficient is taken according to the visual characteristics of the riverbed.
The purpose of this work is to determine the relationship of the roughness coefficient and dimensionless complexes at different water depths (before and after entering the floodplain).
All calculations are performed according to the results of studying the hydrological conditions of the Chernaya river. The roughness coefficient is determined by the numerical method.
Analysis of the maximum depth allows to obtain its certain value. It is shown that the hydraulic radius increases at a higher depth. When the maximum depth is deeper, this dependence is nonmonotonic, and when water enters the floodplain, the hydraulic radius strongly differs from the average depth of the minor stream. It is found that before entering the floodplain, there is a significant stochastic relationship between the roughness coefficient, Reynolds number and the dimensionless complex. After entering the floodplain, there is a close stochastic relationship between roughness coefficient and the Froude number. When determining the minimum water levels, the exponent of Chezy's velocity factor in the Manning formula cannot be considered a constant value, because this can lead to a great error.
About the Authors
N. R. AkhmedovaRussian Federation
Natalia R. Akhmedova, PhD
1, Sovetsky Ave., 236000, Kaliningrad
V. A. Naumov
Russian Federation
Vladimir A. Naumov, DSc, Professor
1, Sovetsky Ave., 236000, Kaliningrad
References
1. Valov A.O., Degtyarev V.V., Fedorova N.N. Evaluation of the influence of bottom roughness on parameters of wave flows in channels. AIP Conference Proceedings. 2018. V. 1939. 020041.
2. Kim J.S., Lee C.J., Kim W., Kim Y.J. Roughness coefficient and its uncertainty in gravel-bed river. Water Science and Engineering. 2010. V. 3, No. 2, 2010. Pp. 217-232. DOI: 10.3882/j.issn.1674-2370.2010.02.010
3. Pisarev A.V., Khrapov S.S., Agafonnikova E.O., Khoperskov A.V. Chis-lennaya model' dinamiki poverkhnostnykh vod v rusle Volgi: otsenka koeffitsienta sherokhovatosti [Numerical model of shallow water dynamics in the Volga channel: Roughness coefficient measurement]. Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki. 2013. No. 1. Pp. 114–130. DOI: 10.20537/vm130111 (rus)
4. Song S., Schmalz B., Xu Y.P., Fohrer N. Seasonality of roughness – the indicator of annual river flow resistance condition in a lowland catchment. Water Resources Management. 2017. V. 31. No. 11. Pp. 3299–3312. DOI: 10.1007/s11269-017-1656-z
5. Ye A., Zhou Z., You J., Ma F., Duan Q. Dynamic Manning's roughness coefficients for hydrological modelling in basins. Hydrology Research. 2018. V. 49. No. 5. Pp. 1379–1395. DOI: 10.2166/nh.2018.175
6. Dyakonova T., Khoperskov A. Bottom friction models for shallow water equations: Manning's roughness coefficient and small-scale bottom heterogeneity. Journal of Physics: Conference Series. 2018. V. 973. 012032.
7. Attari M., Taherian M., Hosseini S.M, Niazmand S.B., Jeiroodi M., Mohammadian A. A simple and robust method for identifying the distribution functions of Manning’s roughness coefficient along a natural river. Journal of Hydrology. 2020. V. 595. 125680. DOI: 10.1016/j.jhydrol.2020.125680
8. Mardani N., Suara K., Fairweather H., Brown R., McCallum A., Sidle R. Improving the accuracy of hydrodynamic model predictions using Lagrangian calibration. Water. 2020. V. 12. P. 575. DOI: 10.3390/w12020575
9. Beene D., Zhang S., Paulus G. Workflow for hydrologic modelling with sUAS-acquired aerial imagery. Geocarto International. 2021. V. 36, No. 12. Pp. 1346–1364. DOI: 10.1080/10106049.2019.1648562.
10. Baryshnikov N.B., Subbotina E.S., Demidova Yu.A. Koeffitsienty sherokhovatosti rechnykh rusel [Roughness coefficients of riverbeds]. Uchenye zapiski RGGMU. 2010. No. 12. Pp. 14–19. (rus)
11. Baryshnikov N.B., Dregval' M.S., Isaev D.I., Gavrilov I.S. Gidravlicheskie soprotivleniya i skorostnye polya potokov v ruslakh slozhnykh form secheniya [Hydraulic resistance and velocity flow fields in riverbeds with complicated section shapes]. Uchenye zapiski RGGMU. 2017. No. 46. Pp. 10–20. (rus)
12. Baryshnikov N.B., Isaev D.I., Sakovich V.M. Metody raschetov maksimal'nykh raskhodov vody ruslopoimennykh potokov v usloviyakh izmeneniya klimata [Maximum water rate calculation methods for floodplain flows in different climatic conditions]. Vestnik Udmurtskogo universiteta. Seriya Biologiya. Nauki o Zemle. 2019. V. 29. No. 1. Pp. 90–96. (rus)
13. Naumov V.A. Empiricheskaya zavisimost' koeffitsienta sherokhovatosti rusla reki Krasnoi ot chisel Fruda [Empirical dependence of roughness coefficient of the Red riverbed from Froude number]. Vestnik nauki i obrazovaniya Severo-Zapada Rossii: elektronnyi zhurnal. 2018. V. 4, No. 3. Available: http://vestnik-nauki.ru/wp-content/uploads/2018/08/2018-N3-Naumov.pdf (accessed October 23, 2021). (rus)
14. Naumov V.A. Analiz izmenchivosti koeffitsienta sherokhovatosti rusla reki po dannym izmerenii, privedennykh v gidrologicheskikh ezhegodnikakh [Analysis of riverbed roughness coefficient according to data given in hydrological yearbooks]. Vestnik nauchno-metodicheskogo soveta po prirodoobustroistvu i vodopol'zovaniyu. 2019. No. 14. Pp. 50–55. (rus)
15. Kochkareva A.S., Akhmedova N.R. Opredelenie koeffitsientov sherokhovatosti pri vypolnenii gidrologicheskikh issledovanii [Determination of roughness coefficients when performing hydrological research]. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2021. V. 7. No. 1. Available: http://vestnik-nauki.ru/wp-content/uploads/2021/02/2021-N1-Kochkareva-Akhmedova.pdf (accessed October 23, 2021). (rus)
16. Kalinin A.V. Zavisimost' koeffitsienta Shezi ot chisla Fruda [Dependence of Chezy's velocity factor from Froude number]. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2019. V. 5. No. 3. Available: http://vestnik-nauki.ru/wp-content/uploads/2019/10/2019-N3-Kalinin.pdf (accessed October 23, 2021). (rus)
17. Naumov V.A. Vliyanie izmenenii urovnya v techenie goda na uklon vodnoi poverkhnosti reki Msty [Annual changes in the water surface level of the Msta river]. Vestnik nauchno-metodicheskogo soveta po prirodoobustroistvu i vodopol'zovaniyu. 2021. No. 21. Pp. 80–86. (rus)
Review
For citations:
Akhmedova N.R., Naumov V.A. Analiz izmeneniya koeffitsienta sherokhovatosti rusla maloi reki v zadannom stvore (na primere r. Chernoi) [Roughness coefficient meas-urements of the Chernaya River channel]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2022;24(1):188-201. (In Russ.) https://doi.org/10.31675/1607-1859-2022-24-1-188-201