Thermal resistance of building envelopes with heat-conducting elements in summer period
https://doi.org/10.31675/1607-1859-2021-23-6-129-142
Abstract
The analysis of the current methods and techniques of solving the problem of heat resistance of building envelopes with heat-conducting elements shows the solution of a onedimensional problem of heat resistance. One of the possible methods for determining the temperature fluctuation amplitude on the inner surface of the building envelopes with heatconducting elements is the modeling of non-stationary temperature conditions in the computer program. However, this solution causes great difficulties, as it transfers the specified calculation from engineering to scientific and cannot be recommended for practical application. The second method of solving this problem is the application of the convergence coefficient, which can be obtained empirically. The selection of the convergence coefficient allows for the influence of the heat-conducting elements on the weighted average surface temperature depending on the envelope configuration.
The structural analysis of the building envelopes and their impact on the averaged amplitude of oscillations on the inner surface are conducted. The arrangement of heat-conducting elements at the outer edge is characterized by a negligible influence of the vibration amplitude on the averaged amplitude over the structural surface. The arrangement of heat-conducting elements greatly affects the heat-conducting elements. According to the comparative analysis, the convergence coefficient is preferable in harmonics of the average temperature fluctuations on the inner surface.
About the Authors
A. N. BelousAleksei N. Belous, PhD, A/Professor
2, Derzhavin Str., Donetsk Region, 86123, Makiivka, Donetsk People's Republic
O. E. Belous
Ol'ga E. Belous, Assistant Lecturer
2, Derzhavin Str., Donetsk Region, 86123, Makiivka, Donetsk People's Republic
L. Z. Kulumbegova
Londa Z. Kulumbegova, Senior Lecturer
8, Putin Str., 100001, Tskhinvali, Republic of South Ossetia
S. T. Krakhin
Stanislav V. Krakhin, Senior Lecturer
2, Derzhavin Str., Donetsk Region, 86123, Makiivka, Donetsk People's Republic
References
1. Samarin O.D., Shevchenkova I.S. Otsenka teplotekhnicheskoi neodnorodnosti naruzhnoi steny pri izmenenii tolshchiny uteplitelya [Thermal heterogeneity of outer wall when changing insulation thickness]. S.O.K. 2016. No. 3. Pp. 4243. (rus)
2. Samarin O.D., Makeshin D.A. Obosnovanie teplozashchity neodnorodnykh ograzhdenii [Rationale for thermal protection of heterogeneous wall systems]. S.O.K. 2015. No. 4. Pp. 5254. (rus)
3. Golubev S.S. Opredelenie privedennogo soprotivleniya teploperedache ograzhdayushchikh konstruktsii na osnove chislennogo rascheta raspredeleniya temperaturnykh polei [Determination of reduced heat transfer resistance of building envelopes based on numerical calculation of temperature field distribution]. Nauchno-tekhnicheskii vestnik Povolzh'ya. 2011. No. 5. Pp. 9397. (rus)
4. Makarov R.A., Mureev P.N., Makarov A.N. Opredelenie popravki k termicheskomu soprotivleniyu pri kvazistatsionarnom rezhime teploperedachi v naruzhnykh stenakh, vypolnennykh iz kirpicha [Correction to thermal resistance in quasi-stationary heat transfer mode in exterior brick walls]. Sovremennye problemy nauki i obrazovaniya. 2015. No.1–1. Pp. 19921992. (rus)
5. Makarov A.N., Mureev P.N., Makarov R.A. Reshenie zadachi regulirovaniya temperatury vnutrennei poverkhnosti naruzhnykh sten rekonstruiruemykh zdanii postroiki 6080-kh godov XX veka [Temperature control of inner surface of wall systems of reconstructed buildings built in the 1960s and 1980s]. Fundamental'nye issledovaniya. 2016. No. 6-1. Pp. 8387. (rus)
6. Mikov A.V., Balushkin A.L. Vliyanie teploprovodnykh vklyuchenii na raschet privedennogo soprotivleniya teploperedache fasada zhilogo zdaniya s ispol'zovaniem raschetov temperaturnykh polei [Influence of heat-conducting elements on heat transfer resistance of residential building facade using temperature field calculations]. In: Nauchno-tekhnicheskii progress kak mekhanizm razvitiya sovremennogo obshchestva: sbornik statei Mezhdunarodnoi nauchnoprakticheskoi konferentsii (Proc. Int. Sci. Conf. ‘Scientific and Technological Progress as a Mechanism for Development of Modern Society’). Ufa, 2020. Pp. 3845. (rus)
7. Belous A.N., Kotov G.A., Sapronov D.A., Novikov B.A. Opredelenie soprotivleniya teploperedache pri nestatsionarnom teplovom rezhime [Heat transfer resistance in non-stationary thermal conditions]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2020. V. 22. No. 6. Pp. 8393. (rus)
8. Gagarin V.G., Neklyudov A.Yu. Uchet teplotekhnicheskikh neodnorodnostei ograzhdenii pri opredelenii teplovoi nagruzki na sistemu otopleniya zdaniya [Consideration of thermal heterogeneities of enclosures in determining heat load on heating system of building]. Zhilishchnoe stroitel'stvo. 2014. No. 6. Pp. 37. (rus)
9. Gagarin V.G., Plyushchenko N.Yu. Opredelenie termicheskogo soprotivleniya ventiliruemoi prosloiki NFS [Thermal resistance of ventilated NFS layer]. Stroitel'stvo: nauka i obrazovanie. 2015. No. 1. Pp. 11. (rus)
10. Gorshkov A.S. Predlozheniya po sovershenstvovaniyu normativnykh trebovanii k ograzhdayushchim konstruktsiyam [Improvement of regulatory requirements for building envelopes]. Stroitel'nye materialy, oborudovanie, tekhnologii XXI veka. 2017. No. 12. Pp. 4952. (rus)
11. Mikheev D.A. Sravnitel'nyi analiz otmenennogo i predlozhennogo metodov rascheta privedennogo soprotivleniya teploperedache ograzhdayushchikh konstruktsii [Comparative analysis of abolished and proposed methods for calculating heat transfer resistance of building envelopes]. Nauchnyi zhurnal stroitel'stva i arkhitektury. 2017. No. 3 (47). Pp. 1120. (rus)
12. Tusnina O.A. Teplotekhnicheskii raschet konstruktsii chislennymi metodami [Thermal calculation of structures by numerical methods]. Vestnik MGSU. 2013. No. 11. Pp. 9199. (rus)
13. Bogoslovskii V.N. Stroitel'naya teplofizika (teplofizicheskie osnovy otopleniya, ventilyatsii i konditsionirovaniya vozdukha) [Construction thermophysics (thermophysical basis of heating, ventilation, and air conditioning)]. Moscow: Vysshaya shkola, 1982. 415 p. (rus)
14. Koshlatyi O.B. Zavisimost' teploustoichivosti naruzhnykh sten ot ikh konstruktivnogo resheniya [Dependence of thermal resistance of exterior walls on their design solution]. In: Novye idei novogo veka: materialy mezhdunarodnoi nauchnoi konferentsii (Proc. Int. Sci. Conf. ‘New Ideas of New Century’). 2013. V. 2. Pp. 357360. (rus)
15. Malyavina E.G., Usmanov Sh.Z. Ogranichenie amplitudy kolebanii temperatury pomeshcheniya v teplyi period goda [Limiting the amplitude of room temperature fluctuations during summer period]. Vestnik grazhdanskikh inzhenerov. 2017. No. 2 (61). Pp. 188194. (rus)
16. Gorshkov A.S., Rymkevich P.P. Diagrammnyi metod opisaniya protsessa nestatsionarnoi teploperedachi [Diagram method to describe nonstationary heat transfer]. Inzhenerno-stroitel'nyi zhurnal. 2015. No. 8 (60). Pp. 6882. (rus)
17. Panferov V.I., Panferov S.F. Primenenie metoda chastotnykh peredatochnykh funktsii dlya resheniya odnoi zadachi teploustoichivosti ograzhdeniya [Frequency transfer function method for heat resistance of building envelopes]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Stroitel'stvo i arkhitektura. 2015. V. 15. No. 1 Pp. 4851. (rus)
18. Kutuev M.D., Manapbaev I.K. Ispol'zovanie metoda interpolirovaniya dlya rascheta teploustoichivosti ograzhdayushchikh konstruktsii v usloviyakh Kyrgystana [Interpolation method to calculate heat resistance of fencing structures Kyrgyzstan]. Vestnik KRSU. 2017. V. 17. No. 5. Pp. 157159. (rus)
19. Deconinck A., Roels S. The as-built thermal quality of building components: characterising non-stationary phenomena through inverse modelling. Energy Procedia. 2017. V. 132. Pp. 351356. (rus)
20. Rulik S., Wróblewski W., Majkut M., Strozik M., Rusin K. Experimental and numerical analysis of heat transfer within cavity working under highly non-stationary flow conditions. Energy. 2020. V. 190. 116303. (rus)
21. Stolarska A., Strzałkowski J. Modelling of edge insulation depending on boundary conditions for the ground level. IOP Conference Series: Materials Science and Engineering. 2017. V. 245 No. 4. 042003.
22. Adilhodzhaev A.I., Shaumarov S.S., Shipacheva E.V., Kandahorov S.I. Complex approach at thermalization external walls of residential buildings. International Journal of Advanced Research in Science, Engineering and Technology. 2019. V. 6. I. 1. Pp. 71–77.
23. Shaumarov S.S. On the issue of increasing energetic efficiency of buildings in railway transport. In: Proc. 8th Int. Conf. ‘Transport Problems – 2016’. Katowice, Poland. Pp. 522–532.
24. Belous A.N., Belous O.E., Krakhin S.V. Pereraspredelenie teplovogo potoka v tolshche ograzhdayushchei konstruktsii pri sutochnom tsikle letnego perioda [Heat flow redistribution in wall structure during diurnal cycle in summer]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2021. V. 23. No. 2. Pp. 96-104. DOI 10.31675/1607-1859-2021-23-2-96-104 (rus)
Review
For citations:
Belous A.N., Belous O.E., Kulumbegova L.Z., Krakhin S.T. Thermal resistance of building envelopes with heat-conducting elements in summer period. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(6):129-142. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-6-129-142