Noncontinuous noise calculated by room response function determined by experimental data
https://doi.org/10.31675/1607-1859-2021-23-6-117-128
Abstract
Purpose: Experimental determination of the response room function and its use to estimate the acoustic conditions in rooms with noncontinuous noise sources.
Methodology/approach: The detailed parameter calculation of noncontinuous sound fields using the response room function, which is the room response to pulse excitation. The response function can be calculated by analytical or numerical methods and by experimental measurements in production conditions the energy attenuation when a constant noise source is switched off.
Findings: Noncontinuous noise has a negative impact on health. The effective noise reduction is determined by the complete and accurate analysis of its energy parameters. The noncontinuous noise estimation based on equivalent levels does not meet the requirements, especially when pulsed noise sources are active. The experimental technique is proposed for the response function calculation and its use in evaluating the noise conditions in rooms with noncontinuous noise sources.
Practical implications: The experimental determination of the response function to pulse excitation allows studying the acoustic processes in rooms for the formation of noise conditions when analytical methods cannot be used. The experimentally obtained response function makes it possible to solve problems of changing the noise conditions in rooms with noncontinuous noise sources.
About the Authors
A. I. AntonovRussian Federation
Aleksandr I. Antonov, DSc, A/Professor, Tambov State Technical University, ; Leading Scientist, Research Institute of Building Physics RAACS
112, Michurinskaya Str., 392032, Tambov;
21, Lokomotivnyi Ave., 127238, Moscow
V. I. Ledenev
Russian Federation
Vladimir I. Ledenev, DSc, Professor, Tambov State Technical University; Leading Scientist, Research Institute of Building Physics RAACS
112, Michurinskaya Str., 392032, Tambov;
21, Lokomotivnyi Ave., 127238, Moscow
I. V. Matveeva
Russian Federation
Irina V. Matveeva, PhD, A/Professor
112, Michurinskaya Str., 392032, Tambov
M. A. Porozhenko
Russian Federation
Marianna A. Porozhenko, Leading Scientist
21, Lokomotivnyi Ave., 127238, Moscow
References
1. Suvorov G.A., Lihnickij A.M. Impul'snyj shum i ego vliyanie na organizm cheloveka [Pulse noise and its effect on human body]. Leningrad: Meditsina, 1975. 207 p. (rus)
2. Antonov A.I., Ledenev V.I., Matveeva I.V., Shubin I.L. Raschety impul'snogo shuma pri proektirovanii sredstv ego snizheniya v proizvodstvennyh zdaniyah [Pulse noise calculations and its reduction in industrial buildings]. Stroitel'stvo i rekonstrukciya. 2019. No. 3(83). Pp. 2233. (rus)
3. Kan'shin V.B. Issledovanie vozdejstviya i rassmotrenie metodov snizheniya shumov impul'snogo haraktera na organizm cheloveka [Impact and methods of reducing pulse noise on human body]. In: III Vsesoyuznaya konferenciya po bor'be s shumom i vibraciej: materialy tezisov dokladov sekcii “Dejstvie shuma i vibracij na organism” [Proc. 3rd All-Union Conf. on Noise and Vibration Prevention, Section “The Effect of Noise and Vibrations on Human Body”]. Chelyabinsk, 1980. Pp. 2427. (rus)
4. Giyasov B.I., Ledenev V.I., Matveeva I.V. Method for noise calculation under specular and diffuse reflection of sound. Magazine of Civil Engineering. 2018. No. 1 (77). Pp. 1322.
5. Tsukernikov I., Shubin I., Antonov A., Ledenev V., Nevenchannaya T. Noise calculation method for industrial premises with bulky equipment at mirror-diffuse sound reflection. Procedia Engineering. Proc. 3rd Int. Conf. ‘Dynamics and Vibroacoustics of Machines’. 2017. Pp. 218225. DOI: 10.1016/j.proeng.2017.02.291
6. Visentin C., Valeau V., Prodi N., Picaut J. A numerical investigation of the sound intensity field in rooms by using diffusion theory and particle tracing. In: Proc. 20th Int. Congr. on Acoustics. Sydney, Australia, 2010. Pp. 23–27.
7. Foy C., Picaut J., Valeau V. Introduction de la diffusivity des parois au sein du modèle de diffusion acoustique. CFA VISHNO, 2016.
8. Foy C., Valeau V., Picaut J., Prax C., Sakout A. Spatial variations of the mean free path in long rooms: Integration within the room-acoustic diffusion model. In: Proc. 22nd Int. Congr. on Acoustics. Buenos Aires, 2016.
9. Shubin I.L., Ledenev V.I., Antonov A.I., Merkusheva N.P. Ispol'zovanie kart doz shuma pri razrabotke organizacionnyh mer shumozashchity v proizvodstvennyh pomeshcheniyah s nepostoyannymi rabochimi mestami [Nnoise dose maps in the development of noise protection measures in industrial premises with non-permanent workplaces]. Zhilishchnoe hozyajstvo i kommunal'naya infrastruktura. 2021. No. 1 (16). Pp. 8697. (rus)
10. Makrinenko L.I. Akustika pomeshchenij obshchestvennyh zdanij [Acoustics of public buildings]. Moscow: Stroiizdat, 1986. 173 p. (rus)
11. Antonov A.I., Ledenev V.I., Shubin I.L. Numerical method for impulse noise calculation with diffuse sound reflection. IOP Conference Series: Materials Science and Engineering. 2021. V. 1079. No. 4. DOI: 10.1088/1757-899X/1079/4/042044
Review
For citations:
Antonov A.I., Ledenev V.I., Matveeva I.V., Porozhenko M.A. Noncontinuous noise calculated by room response function determined by experimental data. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. JOURNAL of Construction and Architecture. 2021;23(6):117-128. (In Russ.) https://doi.org/10.31675/1607-1859-2021-23-6-117-128