УДК 533.924

DOI: 10.31675/1607-1859-2020-22-5-153-159

B.A. BЛACOB¹, П.В. КОСМАЧЕВ^{1,2},

¹Томский государственный архитектурно-строительный университет, ²Институт физики прочности и материаловедения СО РАН

МОРФОЛОГИЯ И РАЗМЕРНЫЕ ПАРАМЕТРЫ Наночастиц диоксида кремния, полученных плазменно-дуговым методом*

В работе приводятся результаты комплексного исследования морфологии, распределения по размерам, среднего размера, удельной поверхности и степени агломерации наночастиц SiO₂, полученных по плазменно-дуговой технологии из природного высококремнеземистого сырья (кварцита). Применялись методы динамического рассеяния света, просвечивающей электронной микроскопии, адсорбционный метод. Исследование показало, что при переработке в плазменной установке природного кварцита возможно получать полидисперсные наночастицы диоксида кремния с распределением 10–300 нм, средним размером 30 ± 7 нм, удельной поверхностью 71 ± 4 м²/г. При этом частицы склонны к агломерации в среднем по десять частиц. Для исследуемого порошка установлен дзета-потенциал -54 ± 9 мВ, что является полезным с прикладной точки зрения при планировании многокомпонентных систем на его основе. Исследуемый порошок может применяться в качестве упрочняющей добавки для изготовления строительных материалов с повышенными эксплуатационными характеристиками для создания объектов специального назначения.

Ключевые слова: нанопорошок диоксида кремния; плазменно-дуговой метод; динамическое рассеяние света; просвечивающая электронная микроскопия; адсорбционный метод; морфология; распределение по размерам; удельная поверхность; агломераты.

Для цитирования: Власов В.А., Космачев П.В. Морфология и размерные параметры наночастиц диоксида кремния, полученных плазменно-дуговым методом // Вестник Томского государственного архитектурно-строительного университета. 2020. Т. 22. № 5. С. 153–159. DOI: 10.31675/1607-1859-2020-22-5-153-159

V.A. VLASOV¹, P.V. KOSMACHEV^{1,2},

¹Tomsk State University of Architecture and Building, ²The Institute of Strength Physics and Materials Science SB RAS

MORPHOLOGY AND SIZE OF SILICA NANOPARTICLES OBTAINED BY LOW-TEMPERATURE PLASMA

The paper presents the results of a comprehensive study of the particle morphology, size distribution, average size, specific surface area and agglomeration of SiO_2 nanoparticles obtained by plasma technology from natural high-silica raw materials (quartzite). The dynamic light scattering, transmission electron microscopy, and nitrogen adsorption techniques are

© Власов В.А., Космачев П.В., 2020

^{*} Работа выполнена в соответствии с Планом фундаментальных научных исследований Российской академии архитектуры и строительных наук (РААСН) и Министерства строительства и жилищно-коммунального хозяйства Российской Федерации на 2020 год «ЦНИИП Минстроя России».

used. It is shown that using the plasma source, polydisperse silica nanoparticles with the distribution of 10-300 nm can be obtained with the average size of 30 ± 7 nm and specific surface area of 71 ± 4 m²/g from natural quartzite. The average agglomerate consists of about 10 particles. The zeta potential varies from -54 to 9 mV for the powder, which can be useful in planning multicomponent systems. The investigated powder can be used as a hardening additive for the manufacture of building materials with improved performance for the creation of special-purpose objects.

Keywords: silica nanoparticles; plasma technology; dynamic light scattering; transmission electron microscopy; adsorption method; morphology; particle size distribution; specific surface area; agglomerates.

For citation: Vlasov V.A., Kosmachev P.V. Morfologiya i razmernye parametry nanochastits dioksida kremniya, poluchennykh plazmenno-dugovym metodom [Morphology and size of silica nanoparticles obtained by low-temperature plasma]. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2020. V. 22. No. 5. Pp. 153–159. DOI: 10.31675/1607-1859-2020-22-5-153-159

Введение

За последние десятилетия строительная отрасль, как и многие другие технологические сферы, стала неразрывно связана с применением нанотехнологий [1–2]. Современные строительные материалы сложно представить без применения наноразмерных компонентов [3–5]. Так, особое место на рынке занимают оксидные нанопорошки, и в частности нанопорошок SiO₂, применяемый в качестве функциональной добавки для широкой номенклатуры стройматериалов [6–9].

Востребованность нанопорошков определяет необходимость точной диагностики поставляемой на рынок продукции, поскольку различные материалы требуют определенных характеристик наночастиц для придания им заданных конструкционных и функциональных свойств. На сегодняшний день разработаны различные методы, позволяющие определять геометрические характеристики наноразмерных частиц [10–14]. Наиболее полное представление о дисперсности частиц в нанопорошке дает установление таких его характеристик, как распределение по размерам, средний размер частиц, их удельная поверхность и морфология, степень агломерации.

Целью работы является исследование морфологии и размерных параметров наноразмерного диоксида кремния, полученного плазменным методом, с использованием комплекса современных методов.

Материалы и методы

Наночастицы SiO₂ получали плазменно-дуговым методом [14, 15]. Температура процесса до 5000 К позволяет использовать в качестве сырья практически любые материалы, в том числе и природного происхождения. В качестве сырья был использован кремнезем, содержащий материал российского месторождения: кварцит Чупинского месторождения.

Измерение линейных размеров частиц и расчет основных гранулометрических характеристик системы, таких как средние размеры частиц и построение диаграммы распределения частиц по размерам, а также изучение их морфологии проводили методом просвечивающей электронной микроскопии (ПЭМ). Для этого пробы полученных порошков SiO_2 исследовались на просвечивающем электронном микроскопе CM 12 (Philips, Нидерланды), 120 кэВ. Предварительно образцы порошков диспергировали в спирте с использованием ультразвуковой ванны. Полученная дисперсия наносилась на медную сетку для микроскопии с аморфной пленкой углерода на поверхности и затем высушивалась. По результатам полученных ПЭМ-изображений проводилось построение диаграммы распределения частиц по размерам согласно статистическим данным не менее чем для 1000 частиц с применением программы iTEM (Olympus). Обработка проводилась без включения агломератов в статистику.

Средний размер агломератов частиц и величину электрокинетического потенциала определяли методом динамического рассеяния света (ДРС) на анализаторе размера частиц и дзета-потенциала серии Zetasizer Nano-ZS (Malvern Instruments Ltd, Великобритания), оснащенном гелий-неоновым лазером (633 нм, 4 мВт). Рабочий диапазон определения размеров частиц от 0,6 нм до 6 мкм. Угол светорассеяния 173°. Пробу предварительно диспергировали в ультразвуковой ванне в течение минуты. Результирующие графики распределения агломератов частиц по размерам получали с помощью программного обеспечения DTS Application Software от Malvern Instruments.

Удельную поверхность исследуемых частиц измеряли адсорбционным методом (БЭТ) [16] на установке NOVA 2000 (Quantachrome instruments, США) по 5 точкам. В качестве газа-адсорбата использовался азот. Температура ванны 77 К. Для анализа отбирали навески массой 0,5 г.

Для изометрических частиц справедлива оценка среднего размера частиц согласно выражению

$$D_{\rm EDT} = \frac{6 \cdot 10^6}{\rho \cdot S_{\rm yg}} \,, \tag{1}$$

где $D_{\text{БЭТ}}$ – средний диаметр частиц согласно БЭТ-расчету, нм; ρ – теоретическая плотность материала, кг/м³; S_{yg} – удельная поверхность исследуемых частиц, м²/г.

Таким образом, по статистическим данным о распределении частиц по размерам метод ДРС позволяет оценить их средний размер. В то же время, по полученным данным об удельной поверхности порошков адсорбционным методом возможно рассчитать средний размер частиц в агломератах. Важно отметить, что за счет адсорбции газа-адсорбата на поверхности частиц возможно узнать средний размер самих частиц в агломератах, а ДРС не позволяет различать частицы и агломераты, поскольку базируется на оптическом эффекте дифракции. Учитывая эти принципиальные различия, можно оценить степень агломерации наночастиц (nD), определяемую соотношением средних размеров частиц:

$$nD = \frac{D_{\text{ДPC}}}{D_{\text{БЭТ}}},$$
(2)

где $D_{\text{ДPC}}$ – средний диаметр частиц согласно методу динамического рассеяния света, $D_{\text{БЭТ}}$ – средний диаметр частицы согласно методу БЭТ.

Обсуждение результатов

Адсорбционным методом была определена удельная поверхность порошка диоксида кремния $S_{yg} = 71 \pm 4$, м²/г. После чего по формуле (1) рассчитан средний диаметр $D_{\text{БЭТ}} = 38 \pm 3$ нм.

Методом динамического рассеяния света получена диаграмма (рис. 1).

Рис. 1. Распределение по размерам частиц SiO₂, полученное методом динамического рассеяния света

Установлено, что средний размер агломератов частиц $d_{cp} = 360 \pm 20$ нм. Таким образом, степень агломерации частиц, рассчитанная по формуле (2), составляет nD = 9,5, что означает, что устойчивый агломерат в исследуемом порошке состоит в среднем из десяти частиц.

Электрокинетический потенциал наночастиц (рис. 2) является полезной характеристикой для планирования их взаимодействия с другими материалами в многосоставных системах. Для исследуемого порошка $\xi_{cn} = -54 \pm 9$ мВ.

Рис. 2. Электрокинетический потенциал частиц SiO₂

ПЭМ-изображение и статистическая диаграмма распределения по размерам исследуемых частиц диоксида кремния представлены на рис. 3.

Полученные изображения ПЭМ позволяют заключить, что частицы SiO₂ изометрической формы в виде сфер с выраженной полидисперсностью образуют множественные агломераты.

Рис. 3. ПЭМ-изображение частиц SiO₂ (слева) и полученная диаграмма распределения по размерам (справа)

Как видно из построенной диаграммы, распределение по размерам исследуемых наночастиц по своему характеру близко к нормальному. В нанопорошке присутствуют частицы с линейными размерами в диапазоне 10–300 нм, при этом до 95 % находится в интервале до 100 нм. Средний размер частиц $d_{\rm cp} = 30 \pm 7$ нм, что согласуется с результатами адсорбционного метода.

Заключение

Отдельные частицы диоксида кремния не существуют изолированно, слипаясь в агрегаты. Несколько агрегатов, в свою очередь, образуют агломерат, удерживаясь в нем под действием слабых межмолекулярных связей. По этой причине для получения полной картины необходимо проводить комплексное исследование получаемых нанопорошков различными методами. Каждый из методов имеет свои преимущества и недостатки, зная которые возможно успешно характеризовать наноматериал.

Исследование показало, что при переработке в плазменной установке дугового разряда природного кварцита возможно получать полидисперсные наночастицы диоксида кремния с распределением 10–300 нм, средним размером 30 ± 7 нм, удельной поверхностью $71 \pm 4 \text{ м}^2/\text{г}$. При этом частицы склонны в среднем к агломерации по десять частиц.

Для исследуемого порошка установлен дзета-потенциал –54 ± 9 мВ, что является полезным с прикладной точки зрения при планировании многокомпонентных систем на его основе. Исследуемый порошок может применяться в качестве упрочняющей добавки для изготовления строительных материалов с повышенными эксплуатационными характеристиками для создания объектов специального назначения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Bak M., Molnár F., Németh R. Improvement of dimensional stability of wood by silica nanoparticles // Wood Material Science & Engineering. 2018. V. 14. № 1. P. 48–58.

- Mofid S.A., Jelle B.P., Zhao X., et al. Utilization of size-tunable hollow silica nanospheres for building thermal insulation applications // Journal of Building Engineering. 2020. V. 31. P. 101336.
- Cho S., Kruger J., van Rooyen A., et al. Rheology of 3D Printable Lightweight Foam Concrete Incorporating Nano-Silica // RILEM Bookseries. Springer International Publishing. 2019. P. 373–81.
- Rana M.N., Islam M.N., Nath S.K., et al. Influence of chemical additive on the physical and mechanical properties of cement-bonded composite panels made from jute stick // Journal of Building Engineering. 2020. V. 31. P. 101358.
- Jassam T.M., Kien-Woh K., Ng yang-zhi J., et al. Novel cement curing technique by using controlled release of carbon dioxide coupled with nanosilica // Construction and Building Materials. 2019. V. 223. P. 692–704.
- 6. *Mohajerani A., Burnett L., Smith J, et al.* Nanoparticles in Construction Materials and Other Applications, and Implications of Nanoparticle Use // Materials. 2019. V. 12. № 19. P. 3052.
- Zhang X., Du X., Zhao X., et al. Durability and Interfacial Properties of Concrete with Nanosilica-Modified Mortar Cover // Journal of Materials in Civil Engineering. 2019. V. 31. № 6. P. 04019073.
- Hou P., Cheng X., Qian J., et al. Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nanoSiO₂ and its precursor // Construction and Building Materials. 2014. V. 53. P. 66–73.
- 9. Копаница Н.О., Саркисов Ю.С., Демьяненко О.В. Применение нанодисперсного кремнезема в производстве строительных смесей // Вестник Томского государственного архитектурно-строительного университета. 2016. №5. С. 140–150.
- Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. Москва : ИКЦ «Академкнига», 2006. 311 с.
- 11. *Hong, F.C., Yan C.* Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC plasma torch // Advanced powder technology. 2018. V. 29. № 2. P. 220–229.
- 12. Ильвес В.Г., Зуев М.Г., Соковин С.Ю. и др. Свойства аморфного нанопорошка диоксида кремния, полученного импульсным электронным испарением // Физика твердого тела. 2015. Т. 57. № 12. С. 2439–2445.
- 13. Потапов В.В., Горев Д.С., Шалаев К.С. и др. Характеристики нанопорошков диоксида кремния, полученных криохимической вакуумной сублимацией золей // Химическая технология. 2015. № 10. С. 596–600.
- Космачев П.В., Власов В.А., Скрипникова Н.К. Исследование структуры и свойств нанопорошка SiO2, полученного плазменным методом из природных сырьевых материалов // Известия вузов. Физика. 2017. Т. 60. № 2. С. 46–50.
- Космачев П.В. Демьяненко О.В., Власов В.А. и др. Композиционные материалы на основе цемента с нанодисперсным диоксидом кремния // Вестник Томского государственного архитектурно-строительного университета. 2017. № 4 (63). С. 139–146.
- 16. Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers // Journal of American Chemical Society. 1938. № 60 (2). P. 309–319.

REFERENCES

- Bak M., Molnár F., Németh R. Improvement of dimensional stability of wood by silica nanoparticles. Wood Material Science & Engineering. 2018. V. 14. No. 1. Pp. 48–58.
- Mofid S.A., Jelle B.P., Zhao X., et al. Utilization of size-tunable hollow silica nanospheres for building thermal insulation applications. Journal of Building Engineering. 2020. V. 31. P. 101336.
- Cho S., Kruger J., van Rooyen A., et al. Rheology of 3D printable lightweight foam concrete incorporating nano-silica. RILEM Bookseries. Springer International Publishing. 2019. Pp. 373–81.
- Rana M.N., Islam M.N., Nath S.K., et al. Influence of chemical additive on the physical and mechanical properties of cement-bonded composite panels made from jute stick. Journal of Building Engineering. 2020. V. 31. P. 101358.

- Jassam T.M., Kien-Woh K., Ng yang-zhi J., et al. Novel cement curing technique by using controlled release of carbon dioxide coupled with nanosilica. *Construction and Building Materi*als. 2019. V. 223. Pp. 692–704.
- Mohajerani A., Burnett L., Smith J, et al. Nanoparticles in construction materials and other applications, and implications of nanoparticle use. Materials. 2019. V. 12. No. 19. P. 3052.
- Zhang X., Du X., Zhao X., et al. Durability and interfacial properties of concrete with nanosilica-modified mortar cover. Journal of Materials in Civil Engineering. 2019. V. 31. No. 6. P. 04019073.
- Hou P., Cheng X., Qian J., et al. Effects and mechanisms of surface treatment of hardened cement-based materials with colloidal nano SiO2 and its precursor. *Construction and Building Materials*. 2014. V. 53. Pp. 66–73.
- Kopanitsa N.O., Sarkisov Yu.S., Dem'yanenko O.V. Primenenie nanodispersnogo kremnezema vproizvodstve stroitel'nykh smesej [Nanodispersed silicon dioxide used in the production of mix mortars] Vestnik of Tomsk State University of Architecture and Building. 2016. No. 5. Pp. 140–150. (rus)
- Shabanova N.A., Popov V.V., Sarkisov P.D. Chemistry and technology of nanodispersed oxides [Khimiya i tekhnologiya nanodispersnykh oksidov]. Moscow: Akademkniga. 2006. 311 p. (rus)
- Hong, F.C., Yan C. Synthesis and characterization of silicon oxide nanoparticles using an atmospheric DC plasma torch. Advanced Powder Technology. 2018. V. 29. No. 2. Pp. 220–229.
- Ilves V., Zuev S., Sokovin A., Murzakaev A. Svojstva amorfnogo nanoporoshka dioxida kremniya, poluchennogo impul'snym ispareniem [Properties of amorphous silicon dioxide nanopowder obtained by pulsed electron evaporation]. *Fizika tverdogo tela*. 2015. No. 57 (12). Pp. 2439–2445.(rus)
- Potapov V.V., Gorev D.S., Shalaev K.S. Kharakteristiki nanoporoshkov dioksida kremniya, poluchennykh kriokhimicheskoi vakuumnoi sublimatsiei zolei [Characteristics of silicon dioxide nanopowders obtained by cryochemical vacuum sublimation of sols]. *Khimicheskaya* tekhnologiya. 2015. No. 10. Pp. 596–600. (rus)
- Kosmachev P., Vlasov V., Skripnikova N. Issledovanie struktury i svojstv nanoporoshka SiO2 poluchennogo plazmennym metodom iz prirodnykh syr'evykh materialov [Structure and properties of SiO₂ nanopowder obtained from high-silica raw materials by plasma method]. *Izvesti*ya vuzov. Fizika. 2017. No. 60 (2). Pp. 46–50. (rus)
- Kosmachev P.V., Dem'yanenko O.V., Vlasov V.A., et al. Composite Materials Based on Cement With Nanodispersed Silicon Dioxide [Kompozitsionnye materialy na osnove tsementa s nanodispersnym dioksidom kremniya]. Vestnik of Tomsk state University of Architecture and Building. 2017. No. 4. Pp. 139–146. (rus)
- Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. Journal of American Chemical Society. 1938. No. 60 (2). Pp. 309–319.

Сведения об авторах

Власов Виктор Алексеевич, докт. физ.-мат. наук, профессор, Томский государственный архитектурно-строительный университет, 634003, г. Томск, пл. Соляная, 2, rector@tsuab.ru

Космачев Павел Владимирович, канд. техн. наук, Томский государственный архитектурно-строительный университет, 634003, г. Томск, пл. Соляная, 2; Институт физики прочности и материаловедения СО РАН, 634055, г. Томск, просп. Академический, 2/4, kosmachev@tsuab.ru

Authors Details

Viktor A. Vlasov, DSc, Professor, Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk, Russia, rector@tsuab.ru

Pavel V. Kosmachev, PhD, Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk, Russia; The Institute of Strength Physics and Materials Science SB RAS, 8/2, Akademicheskii Ave., 634021, Tomsk, Russia, kosmachev@tsuab.ru