УДК 624.159.4: 624.151.2 DOI: 10.31675/1607-1859-2019-21-6-199-210

М.В. СОКОЛОВ, С.М. ПРОСТОВ, О.В. ГЕРАСИМОВ, Кузбасский государственный технический университет им. Т.Ф. Горбачева

ПРОГНОЗ ГЕОМЕХАНИЧЕСКОГО СОСТОЯНИЯ ЗАКРЕПЛЯЕМОГО ГРУНТОВОГО ОСНОВАНИЯ ГОРНОТЕХНИЧЕСКОГО ЗДАНИЯ

Объектом исследования является геомеханическое состояние ослабленных грунтовых оснований горнотехнического здания до и после уплотнения, усиления или закрепления.

Цель исследования – проведение геомеханического расчета и прогноза для обоснования параметров напорной инъекции при укреплении ослабленного техногенного грунтового основания, разработка рекомендаций по корректировке параметров напорной инъекции.

Были применены численные методы и компьютерное моделирование на основе метода конечных элементов для изучения геомеханического состояния грунтового основания горнотехнического здания с учетом локальных неоднородностей геологического строения и изменений физико-механических свойств грунтов.

Приведены результаты инженерно-геологических изысканий в основании горнотехнического здания, сложенного техногенными насыпными грунтами. Проведено моделирование напряженно-деформированного состояния закрепленного грунтового основания. Представлен анализ изменения геомеханического состояния грунтового массива в результате инъекционного уплотнения, на основе которого даны рекомендации по корректировке параметров технологии инъектирования. Установлена несомненная эффективность применения метода напорной инъекции для усиления грунтовых оснований зданий и сооружений. Приведены рекомендации по корректировке параметров укрепления для горнотехнического здания на ослабленном насыпном грунтовом основании.

Ключевые слова: основания зданий и сооружений; численное компьютерное моделирование; напряжения; деформации; перемещения; укрепление грунтовых оснований; параметры укрепления.

Для цитирования: Соколов М.В., Простов С.М., Герасимов О.В. Прогноз геомеханического состояния закрепляемого грунтового основания горнотехнического здания // Вестник Томского государственного архитектурно-строительного университета. 2019. Т. 21. № 6. С. 199–210. DOI: 10.31675/1607-1859-2019-21-6-199-210

M.V. SOKOLOV, S.M. PROSTOV, O.V. GERASIMOV, Gorbachev Kuzbass State Technical University

PREDICTION OF GEOMECHANICAL STATE OF STABILIZED SOIL FOUNDATION OF MINE ENGINEERING BUILDING

Purpose: Prediction of geomechanical state of soft-soil foundation of buildings before and after compaction, reinforcement or stabilization. Calculation of parameters of pressure injection while stabilizing the soft man-made soil foundation, development of recommendations for parameter adjustment of pressure injection. **Methods:** Numerical methods and computer modeling of the soil foundation using the finite element method for studying its geomechanical

© Соколов М.В., Простов С.М., Герасимов О.В., 2019

state of a mining building with regard to heterogeneities of the local geological structure and changes in the physical and mechanical properties of soils. **Research findings:** The obtained results are based on engineering and geological surveys of the soil foundation of the mining building composed of man-made bulk soils. The stress-strain state of the soil foundation is simulated. As a result of injection compaction the geomechanical state of the soil mass changes. **Practical implications:** Recommendations are given for the parameter adjustment of the injection method. It is shown that the pressure injection method is undoubtedly effective for the soil stabilization for buildings.

Keywords: soil foundation; numerical simulation; stress; deformation; displacement; soil reinforcement; reinforcement parameters.

For citation: Sokolov M.V., Prostov S.M., Gerasimov O.V. Prognoz geomekhanicheskogo sostoyaniya zakreplyaemogo gruntovogo osnovaniya gornotekhnicheskogo zdaniya [Prediction of geomechanical state of stabilized soil foundation of mine engineering building]. Vestnik Tomskogo gosudarstvennogo arkhitekturnostroitel'nogo universiteta – Journal of Construction and Architecture. 2019. V. 21. No. 6. Pp. 199–210.

DOI: 10.31675/1607-1859-2019-21-6-199-210

При строительстве и эксплуатации зданий и сооружений различного назначения, в том числе горнотехнического профиля, особое внимание уделяют вопросу их безопасной, безаварийной эксплуатации. В большинстве случаев причины разного рода аварийных ситуаций кроются в изменении состоянии грунтовых оснований вследствие ряда факторов: обводнения, просадки, морозного пучения и т. д. [1]. Изменения свойств и состояния грунтовых оснований горнотехнических зданий и сооружений также происходят от динамического воздействия при движении технологического транспорта и массовых взрывов. Отдельные категории зданий и сооружений могут располагаться на насыпных основаниях из вскрышных пород и техногенных отложений с постоянно изменяющимся гидрогеологическим режимом.

В результате воздействия совокупности перечисленных факторов грунтовые основания подвержены образованию ослабленных и водонасыщенных зон с низкими деформационными и прочностными свойствами. Образование этих аномальных зон в грунтовом массиве носит случайный характер и сложно диагностируется, поскольку стандартные методы инженерно-геологических изысканий имеют ограничения по количеству скважин, а методы исследования свойств грунтов весьма трудоемкие.

Для повышения устойчивости и стабилизации грунтовых оснований применяют различные методы укрепления, из которых наиболее распространены методы напорной инъекции и электрохимического закрепления [2, 3]. Каждый метод усиления применяется для соответствующего типа грунта и направлен как на усиление (укрепление), так и на заполнение пор, уплотнение, изоляцию грунтового основания.

Наряду с развитием методов укрепления грунтовых оснований актуален вопрос определения рациональных диапазонов технологических параметров, таких как положение и глубина погружения инъекторов, режим инъекции. Существующие аналитические методы довольно точно определяют параметры закрепления, но не учитывают структурные неоднородности массива, наличие аномальных зон, т. к. они основаны на усреднении физико-механических свойств грунтов. Экспериментальные методы контроля деформационных процессов сводятся к долговременным и трудоемким измерениям оседаний сооружений. Более точные параметры получаются при применении методов численного моделирования и прогноза на основе базовых и локальных моделей [4–7], которые способны учитывать особенности строения грунтовых оснований, наличие аномальных зон с низкими физико-механическими свойствами и корректировать параметры инъекции при необходимости на основе геомеханического прогноза.

Цель исследования – проведение геомеханического расчета и прогноза для обоснования параметров напорной инъекции при укреплении ослабленного техногенного грунтового основания горнотехнического здания, разработка рекомендаций по корректировке параметров напорной инъекции.

Методы исследования

Примером проявления неустойчивости сооружений в Кузбассе является станционное здание с постом электроцентрализации, расположенное на территории угольного разреза «Талдинский». Обследуемое сооружение представляет собой 2-этажное кирпичное здание, имеющее размеры в плане 33,4×12,4 м, высотой 10,7 м от поверхности земли. Фундамент здания относится к фундаментам мелкого заложения на насыпном основании и выполнен в виде сплошной сборной ленты из фундаментных блоков. Назначенная глубина заложения фундамента по проекту составляет 3,2 м.

Исследуемая площадка имеет сложный рельеф и характеризуется большим количеством откосов. Абсолютные отметки рельефа находятся в диапазоне 255,1...268,2 м. Вблизи объекта располагаются горные выработки, а в северной и восточной части – различные пристройки и быстровозводимые каркасные сооружения (рис. 1).

Грунтовое основание здания сложено техногенными отложениями, вскрышными породами, отходами ведения горных работ, представленными несколькими разновидностями грунтов, сгруппированных по инженерногеологическим элементам (ИГЭ).

ИГЭ № 1 – насыпной грунт, темно-бурый, в виде смеси дресвы и щебня с суглинистым заполнителем до 25 %, от твердой до тугопластичной консистенции, неслежавшийся. Промораживается в зимнее время. Исходным материалом является алевролит. Мощность колеблется от 0,4 до 1,9 м.

ИГЭ № 2 – насыпной грунт серого цвета в виде смеси дресвы и щебня с суглинистым заполнителем до 15 %, твердой консистенции, неслежавшийся. Исходным материалом в основном является песчаник мелкозернистый, малопрочный, сильновыветрелый. Мощность колеблется от 1,6 до 6,1 м.

ИГЭ № 3 – насыпной грунт пестроцветный в виде смеси дресвы и щебня с суглинистым заполнителем до 23 %, твердой консистенции, уплотненный, слежавшийся. Исходным материалом является алевролит, аргиллит и горельник. Вскрытая мощность – от 2,2 до 2,4 м.

ИГЭ № 2 имеет отличительную особенность в виде клиновидной формы залегания с паданием в двух плоскостях в соответствии с приведенными инженерно-геологическими разрезами (рис. 2).

Рис. 1. План опытного участка: 1 – обследуемое здание; 2 – линия инженерно-геологического разреза; С-1–С-4 – инженерно-геологические скважины

Рис. 2. Инженерно-геологические разрезы: 1–3 – номера инженерно-геологических элементов

Основные физико-механические свойства были определены в лабораторных условиях и отображены в таблице.

Наименование физико-механических свойств	Ед. измер.	Номер инженерно- геологического элемента		
		ИГЭ-1	ИГЭ-2	ИГЭ-3
 Природная плотность р: 				
в естественном состоянии	г/см ³	1,65	1,95	2,05
в замоченном состоянии		—	1,75	1,95
2. Угол внутреннего трения ф:				
в естественном состоянии	град	20	24	31
в замоченном состоянии		—	20	24
3. Сцепление <i>С</i> :				
в естественном состоянии	кПа	7	19	28
в замоченном состоянии		—	10	25
4. Модуль деформации Е:				
в естественном состоянии	МΠа	10	20	24
в замоченном состоянии		—	12	20

Сводная таблица механических свойств грунтов

Для прогноза и изучения изменения геомеханического состояния грунтового основания проводилось численное компьютерное моделирование на базе программного комплекса Alterra российского разработчика «ИнжПроектСтрой». В расчетах рассматривались локальные модели грунтового основания в зонах с наиболее характерной формой залегания слоев для реализации метода конечных элементов [8, 9].

Модель грунтового основания здания имеет базовые размеры $38 \times 18,2$ м, включает 3 слоя техногенных отложений согласно представленным разрезам и расположенных на расстоянии 6 м друг от друга 3 ленточных фундамента (рис. 3, *a*). Каждый фундамент нагружен сосредоточенной силой *P* и передает усилие на подошву шириной 1,2 м, расположенную на глубине $d_f = 3,2$ м. Фундамент выполнен из железобетона со следующими свойствами: плотность $\rho_f = 2500$ кг/м³, модуль деформации $E_f = 2000$ кПа, коэффициент Пуассона $\upsilon = 0,15$. Физико-механические свойства ИГЭ приняты как для замоченного состояния, что моделирует изменение гидрогеологического режима.

Рис. 3. Схемы локальной модели и закрепления грунтового основания: 1 – ленточный фундамент; 2 – зона закрепления; 3 – инъекторы

В соответствии с видом фундамента модель реализована в плоской постановке с условной глубиной 1 м. Пространство модели разделено на треугольные конечные элементы с разряжением сетки к границам модели. Боковые и нижняя границы модели имеют традиционные ограничения перемещений и граничные условия. Расчет производился в линейно-пластической стадии с заданием не более 500 итераций по нелинейным деформациям и не более 500 итераций по пластическим деформациям сдвига [10].

Для изучения влияния укрепления грунтового основания методом напорной инъекции цементно-песчаного раствора была принята схема укрепления для здания на ленточных фундаментах, имеющего внутренние несущие стены [11–13]. Глубина погружения инъекторов, их расположение и параметры напорной инъекции приняты по проекту ООО «НООЦЕНТР» в соответствии с рекомендациями [14, 15] (рис. 3, δ).

Результаты

Анализ результатов производился по характерным вертикальным осям *z*₁, *z*₂ и *z*₃, расположенным вдоль осей симметрии каждого фундамента.

Результаты моделирования вертикальных σ_z и горизонтальных σ_x напряжений представлены в форме изолиний (рис. 4) и графиков (рис. 5).

Рис. 4. Распределение вертикальных $\sigma_z(a)$ и горизонтальных $\sigma_x(\delta)$ напряжений в естественном и укрепленном грунтовом массиве

По форме зон распределения напряжений (рис. 4) четко прослеживается симметрия для каждого фундамента с незначительными искажениями на границе слоев. При укреплении основания площадь зон максимальных напряжений уменьшается как для вертикальных, так и для горизонтальных напряжений.

Вертикальные напряжения σ_z монотонно убывают с увеличением глубины массива, а их величина уменьшается при введении в расчет зон укрепления. Нелинейная часть графиков, соответствующая областям стабилизации напряжений σ_z , располагается на интервале $z_2 = 5,5-10,0$ м.

Прогноз геомеханического состояния закрепляемого грунтового основания 205

Рис. 5. Зависимость вертикальных σ_z (a) и горизонтальных σ_x (б) напряжений от глубины модели z: I – естественный массив; 2 – укрепленный массив

Горизонтальные напряжения σ_x вдоль оси z_1 распределяются с образованием зоны аномальных минимальных значений на интервале $z_1 = 5,0-7,5$ м. Вдоль осей z_2 и z_3 напряжения σ_x распределяются только в пределах ИГЭ № 2, причем в укрепленном массиве вдоль границы слоев 2 и 3 образуются отрицательные напряжения.

Второй этап анализа направлен на оценку закономерностей распределения полных ε_z и пластических ε_{zp} деформаций (рис. 6 и 7).

Форма зон распределения полных вертикальных деформаций ε_z не имеет четкой симметрии (рис. 6), явно проявляется влияние слоистого основания. Для полных горизонтальных деформаций ε_x характерно распределение только в зоне, прилегающей к фундаменту, при этом влияние слоистости наблюдается только для фундамента вдоль оси z_3 . При укреплении грунтового основания происходит перераспределение деформаций между слоями, при этом асимметрия усиливается, для вертикальных деформаций сохраняется влияние слоистости, а для горизонтальных – это влияние значительно слабее. По характеру распределения деформаций можно утверждать, что зоны укрепления являются упорным элементом, который незначительно деформируется в массиве, особенно при наклонном расположении инъекторов.

Рис. 6. Распределение полных вертикальных ε_z (*a*) и горизонтальных ε_x (*б*) деформаций в естественном и укрепленном грунтовом массиве

Рис. 7. Распределение пластических вертикальных ε_{zp} (*a*) и горизонтальных ε_{xp} (*б*) деформаций в естественном и закрепленном грунтовом массиве

Распределение пластических деформаций имеет более сложный характер (рис. 7). Они сконцентрированы в большинстве случаев под фундаментом и по границе слоев, имея при этом разные направления развития от оси симметрии фундаментов. С введением зон укрепления происходит локализация пластических деформаций в межзонном пространстве, однако незначительная часть деформаций выходит за обозначенную зону, свидетельствуя о смещении наклонных зон укрепления.

Распределения полных деформации ε_z вдоль оси z_1 (рис. 8, *a*) имеют схожие очертания с графиками напряжений, за исключением пика напряжений в интервале $z_1 = 4,0-5,0$ м, который сохраняется при укреплении, но имеет меньшую амплитуду. Вдоль оси z_2 деформации ε_z отличаются явно выраженным падением значений на границе слоев ИГЭ № 2 и № 3, которое не устраняется при укреплении. На интервале $z_2 = 3,8-4,9$ м значения ε_z значительно возрастают. Наличием скачка деформаций на границе слоев характерен также график $\varepsilon_z(z_3)$, за которым происходит монотонное снижение расчетных значений.

Рис. 8. Зависимость полных $\varepsilon_{z}(a)$ и пластических $\varepsilon_{zp}(b)$ вертикальных деформаций от глубины модели *z*:

1 - естественный массив; 2 - закрепленный массив

Проявление пластических деформаций ε_{zp} (рис. 8, б) характерно только на глубине до 6 м, т. е. только в пределах ИГЭ № 2 (слабого, неслежавшегося слоя), при этом графики распределения вдоль всех осей имеют область максимума. При укреплении наибольший эффект наблюдается для осей z_1 и z_3 , где значения ε_{zp} уменьшаются в 2 и 1,5 раза соответственно. При этом вдоль оси z_2 зафиксировано увеличение деформаций ε_{zp} в среднем на 14 %, с расширением зоны пластических деформаций на 0,2 м по глубине. Таким образом, результаты оценки деформированного состояния свидетельствуют о недостаточной эффективности принятой схемы закрепления для центрального фундамента.

Графики распределения полных горизонтальных ε_x и пластических ε_{xp} деформаций (рис. 9) имеют зону максимальных значений в границах ИГЭ № 2, которая при укреплении снижается для всех фундаментов, за исключением центрального.

Рис. 9. Зависимость полных $\varepsilon_x(a)$ и пластических $\varepsilon_{xp}(\delta)$ горизонтальных деформаций от глубины модели *z*:

1 – естественный массив; 2 – закрепленный массив

Выводы

По результатам проведенного анализа в целом подтверждена эффективность проведенного закрепления грунтового основания, что проявилось в значительном снижении вертикальных деформаций и напряжений. Выявлена необходимость изменения схемы закрепления центрального фундамента, т. к. вдоль оси z_2 наблюдается возрастание как полных, так и пластических деформаций, а горизонтальные напряжения имеют отрицательные значения на границе слоев 2 и 3, при этом возможно смещение наклонной зоны закрепления под действием нагрузок.

Основываясь на результатах геомеханического моделирования, рекомендовано изменить в схеме закрепления центрального фундамента наклонное на вертикальное расположение скважин. Таким образом будет достигнуто повышение сроков безаварийной эксплуатации здания.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. *Тер-Мартиросян З.Г.* Современные проблемы механики грунтов и фундаментостроения // Вестник МГСУ. 2015. № 8. С. 5–6.

- 2. Ибрагимов М.Н., Семкин В.В., Шапошников А.В. Цементация грунтов инъекцией растворов в строительстве. Москва : Изд-во АСВ, 2017. 266 с.
- Страданченко С.Г., Должиков П.Н., Шубин А.А. Исследование параметров химического и электрохимического закрепления грунтов. Новочеркасск : ЮРГТУ (НПИ), 2009. 198 с.
- Пономарев А.Б., Сычкина Е.Н. Результаты моделирования напряженно-деформированного состояния регулируемого фундамента и грунтового основания в программном комплексе ANSYS WORKBENCH // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2015. № 4. С. 76–88.
- 5. Строкова Л.А. Численное моделирование влияния упрочнения грунтового массива цементно-песчаной инъекцией на деформации основания // Известия Томского политехнического университета. Инжиниринг георесурсов. 2017. № 10. С. 6–17.
- 6. Лютов В.Н., Казицин В.А. Прикладное математическое моделирование процесса закрепления лессовых грунтов струйной цементацией для условий Барнаула // Ползуновский альманах. 2016. № 1. С. 143–146.
- 7. Protosenya A.G., Karasev M.A., Belyakov N.A. Numerical simulation of rock mass limit state using Stavrogin's strength criterion // Journal of mining science. 2015. V. 51. № 1. P. 31–37.
- 8. Фадеев А.Б. Метод конечных элементов в геомеханике. Москва : Недра, 1987. 221 с.
- 9. Горбунов-Посадов М.И., Маликова Т.А., Соломин В.И. Расчет конструкций на упругом основании. Москва : Стройиздат, 1984. 679 с.
- 10. Kornienko M., Zhuk V., Abed Samar, Chegodaev I. Experience of fixing a weak base foundation by vertical soil-cement elements using drill-mixing technology // Технические науки и технологии. 2018. № 2 (12). С. 290–296.
- Prostov S.M., Sokolov M.V., Pokatilov A.V. The Influence of In-jecting Strengthening for Uniform Subgrade Soils of Strip Foundations on Their Stress-Strain State // International Journal of Applied Engineering Research. 2015. V. 10. Number 25. P. 45297–45306.
- Sokolov M., Prostov S. Modeling of Geomechanical Processes Case of Uneven Settling of Foundations Constructions // Proceedings of the 8th Russian-Chinese Symposium «Coal in the 21st Century: Mining, Processing, Safety». Advances in Engineering Research. 2016. V. 92. September. P. 206–212.
- Sokolov M., Prostov S. Increasing Stability of Mine Surface Facilities on the Fill-Up Ground // E3S Web Conf. IInd International Innovative Mining Symposium. 2017. V. 21. 01012 (DOI: https://doi.org/10.1051/e3sconf/20172101012)
- 14. Ибрагимов М.Н. Вопросы проектирования и производства уплотнения грунтов инъекцией растворов по гидроразрывной технологии // Основания, фундаменты и механика грунтов. 2015. № 2. С. 22–27.
- Рекомендации по проектированию, расчету и устройству геотехногенных блоков и методам контроля качества их выполнения / Уральский промстройниипроект. Свердловск : РотаПринт, 1989. 108 с.

REFERENCES

- 1. *Ter-Martirosyan Z.G.* Sovremennye problemy mekhaniki gruntov i fundamentostroeniya [Modern problems of soil mechanics and foundation engineering]. *Vestnik MGSU*. 2015. No. 8. Pp. 5–6. (rus)
- Ibragimov M.N., Semkin V.V., Shaposhnikov A.V. Tsementatsiya gruntov in"ektsiei rastvorov v stroitel'stve [Cementation of soils by injection of solutions in construction]. Moscow: ASV, 2017. 266 p. (rus)
- 3. *Stradanchenko S.G., Dolzhikov P.N., Shubin A.A.* Issledovanie parametrov khimicheskogo i elektrokhimicheskogo zakrepleniya gruntov [Study of the parameters of chemical and electrochemical fixation of soils]. Novocherkask: SRSTU (NPI), 2009. 198 p. (rus)
- 4. Ponomarev A.B. Rezul'taty modelirovaniya napryazhenno-deformirovannogo sostoyaniya reguliruemogo fundamenta i gruntovogo osnovaniya v programmnom komplekse ANSYS WORKBENCH [Results of modeling stress-strain state of adjustable and soil foundations in the ANSYS Workbench software package]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Stroitel'stvo i arkhitektura. 2015. No. 4. Pp. 76–88. (rus)

- Strokova L.A. Chislennoe modelirovanie vliyaniya uprochneniya gruntovogo massiva tsementno-peschanoi in"ektsiei na deformatsii osnovaniya [Numerical modeling of soil mass hardening by cement-sand injection and its deformation]. *Izvestiya Tomskogo politekhnicheskogo* universiteta. Inzhiniring georesursov. 2017. No. 10. Pp. 6–17. (rus)
- Lyutov V.N., Kazitsin V.A. Prikladnoe matematicheskoe modelirovanie protsessa zakrepleniya lessovykh gruntov struinoi tsementatsiei dlya uslovii Barnaula [Applied mathematical modeling of the process of fixing loess soils by jet cementation for the conditions of Barnaul]. *Polzunovskii al'manakh.* 2016. No. 1. Pp. 143–146. (rus)
- Protosenya A.G., Karasev M.A., Belyakov N.A. Numerical simulation of rock mass limit state using Stavrogin's strength criterion. Journal of mining science. 2015. V. 51. No. 1. Pp. 31–37.
- Fadeev A.B. Metod konechnykh elementov v geomekhanike [The finite element method in geomechanics]. Moscow: Nedra, 1987. 221 p. (rus)
- 9. Gorbunov-Posadov M.I., Malikova T.A., Solomin V.I. Raschet konstruktsii na uprugom osnovanii [Design calculation on an elastic foundation]. Moscow: Stroyizdat, 1984. 679 p. (rus)
- Kornienko M., Zhuk V., S. Abed, Chegodaev I. Experience of fixing a weak base foundation by vertical soil-cement elements using drill-mixing technology. *Technical Sciences and Technol*ogies. 2018. No. 2 (12). Pp. 290–296.
- Prostov S.M., Sokolov M.V., Pokatilov A.V. The influence of injecting strengthening for uniform subgrade soils of strip foundations on their stress-strain state. International Journal of Applied Engineering Research. 2015. V. 10. No. 25. Pp. 45297–45306.
- Sokolov M.V., Prostov S.M. Modeling of geomechanical processes case of uneven settling of foundations constructions. In: Advances in Engineering Research. Proc. 8th Russ.-Chinese Symp. 'Coal in the 21st Century: Mining, Processing, Safety'. 2016. V. 92. Pp. 206–212.
- 13. Sokolov M.V., Prostov S.M. Increasing stability of mine surface facilities on the fill-up ground. E3S Web. 2nd Int. Conf. 'Innovative Mining Symposium'. 2017. V. 21. P. 01012.
- Ibragimov M.N. Voprosy proektirovaniya i proizvodstva uplotneniya gruntov in "ektsiei rastvorov po gidrorazryvnoi tekhnologii [Design and production of soil compaction by injection of solutions using hydraulic fracturing technology]. Osnovaniya, fundamenty i mekhanika gruntov. 2015. No. 2. Pp. 22–27. (rus)
- 15. Rekomendatsii po proektirovaniyu, raschetu i ustroistvu geotekhnogennykh blokov i metodam kontrolya kachestva ikh vypolneniya [Recommendations on design, calculation and installation of geotechnogenic blocks and methods for quality monitoring of their implementation]. Sverdlovsk: RotaPrint, 1989. 108 p. (rus)

Сведения об авторах

Соколов Михаил Валерьевич, канд. техн. наук, доцент, Кузбасский государственный технический университет им. Т.Ф. Горбачева, 650000, г. Кемерово, ул. Весенняя, 28, easokolov42@mail.ru

Простов Сергей Михайлович, докт. техн. наук, профессор, Кузбасский государственный технический университет им. Т.Ф. Горбачева, 650000, г. Кемерово, ул. Весенняя, 28, psm.kem@mail.ru

Герасимов Олег Васильевич, канд. техн. наук, доцент, Кузбасский государственный технический университет им. Т.Ф. Горбачева, 650000, г. Кемерово, ул. Весенняя, 28, gerasimov@noocentr.com

Authors Details

Mikhail V. Sokolov, PhD, A/Professor, Gorbachev Kuzbass State Technical University, 28, Vesennyaya Str., 650000, Kemerovo, Russia, easokolov42@mail.ru

Sergei M. Prostov, DSc, Professor, Gorbachev Kuzbass State Technical University, 28, Vesennyaya Str., 650000, Kemerovo, Russia, psm.kem@mail.ru

Oleg V. Gerasimov, PhD, A/Professor, Gorbachev Kuzbass State Technical University, 28, Vesennyaya Str., 650000, Kemerovo, Russia, gerasimov@noocentr.com