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С ПРЕДНАПРЯЖЕНИЕМ  
КОМПОЗИТНЫМИ МАТЕРИАЛАМИ  

В КАЧЕСТВЕ МАТЕРИАЛА УСИЛЕНИЯ 
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Аннотация. Актуальность работы обусловлена наличием на сети автомобильных до-
рог России большого парка мостовых сооружений с железобетонными пролетными стро-
ениями, рассчитанными на устаревшие нормативные нагрузки. Эти конструкции подвер-
жены физическому износу, накоплению дефектов и моральному старению, что снижает 
их несущую способность и требует эффективных методов усиления. 

Цель работы – обоснование методики расчета несущей способности железобетонных 
главных балок мостов, усиленных предварительно напряженными полимерными компо-
зиционными материалами (ПКМ), для восстановления и повышения их эксплуатацион-
ных характеристик. 

Материалы и методы исследования включают анализ напряженно-деформированного 
состояния (НДС) усиленного элемента в три стадии: от действия постоянных нагрузок, от 
преднапряжения ПКМ и в предельном состоянии. Анализ основан на методе предельных 
состояний с использованием нелинейных деформационных моделей бетона и арматуры. 
Расчетный подход верифицирован комплексными лабораторными испытаниями. 

Результаты. Рассмотрены три стадии напряженно-деформированного состояния изги-
баемого железобетонного элемента. Первая стадия соответствует действию усилий на глав-
ные балки от полных расчетных постоянных нагрузок, вторая стадия – действие усилий от 
предварительного напряжения полимерных композиционных материалов; третья стадия со-
ответствует предельному состоянию с учетом напряженно-деформированного состояния 
конструкций первой и второй стадий. Показаны эпюры напряжений в разных стадиях 
напряженно-деформированного состояния сечения с учетом усиления балочного элемента. 

Ключевые слова: углеродное волокно, преднапряженные полимерные компо-
зиционные материалы, несущая способность, деформация, напряженно-дефор-
мированное состояние, предел прочности, балка 
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ORIGINAL ARTICLE 

CALCULATION TECHNIQUE OF REINFORCED CONCRETE 

BRIDGE BEAMS REINFORCED BY PRESTRESSED 

COMPOSITE MATERIALS 

Dmitriy N. Smerdov1, Maxim O. Yashchuk2 
1Siberian State Transport University, Novosibirsk, Russia 
2Rostov State Transport University, Rostov-on-Don, Russia 

Abstract. The paper provides a rationale for the calculation technique of concrete beams re-

inforced by prestressed composite materials. Three stages of the stress-strain state of a bending 

reinforced concrete element are considered. The first stage includes forces affecting the main 

beams from full design constant loads, the second stage is the action of forces from the prelim-

inary stress of polymer composite materials; the third stage is the ultimate state taking into ac-

count the stress-strain state of the two previous structures. Stress-strain curves are obtained for 

different stages, taking into account the beam reinforcement. 

Purpose: Substantiation of the calculation technique for the bearing capacity of reinforced 

concrete beams reinforced with prestressed polymer composites for the restoration and improve-

ment of their performance characteristics. 

Design/methodology/approach: The analysis of numerical models of elements under loads 

and comparison of the obtained results with the laboratory experimental data. The limit-state-

based analysis utilizes nonlinear deformation models of concrete and reinforcement. The calcu-

lation technique is verified by the laboratory tests. 

Research findings: Theoretical and experimental studies substantiate the proposed calculation 

technique for reinforced concrete bridge beams reinforced with prestressed composite materials. 

Practical implications: The calculation technique show a high accuracy in comparison with 

laboratory research. 

Originality/value: Previously, there is no calculation technique for reinforced concrete beams 

reinforced with prestressed composite materials. 

Keywords: carbon fiber, prestressed polymer composite materials, load-bearing ca-

pacity, deformation, stress-strain state, tensile strength, beam 

For citation: Smerdov D.N., Yashchuk M.O. Calculation Technique of Reinforced 

Concrete Bridge Beams Reinforced by Prestressed Composite Materials. Vestnik 

Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of 

Construction and Architecture. 2025; 27 (6): 272–281. DOI: 10.31675/1607-1859-

2025-27-6-272-281. EDN: LUIIPJ 

 

На сети автомобильных дорог Российской Федерации насчитывается бо-

лее 45 000 мостов [16]. Пролетные строения выполнены преимущественно из же-

лезобетона, но также существуют металлические и сталежелезобетонные. 

Наиболее часто встречающиеся конструкции главных балок железобетонных 

пролётных строений автодорожных мостовых сооружений: выпуск 56 инв. 

№ 147/1, выпуск 56 (д) и серия 3.503.1-81. Представленные типы пролётных 

строений имеют ограниченный срок службы, не превышающий 35–40 лет. Сле-

дует обозначить, что данные главные балки пролётных строений запроектиро-

ваны под старые проектные нагрузки: Н-30 – для выпуска соответственно 56 

и 56 (д) и нагрузки А-11 – для серии 3.503.1-81. Основные недостатки данных 

нагрузок в сравнении с актуальной А-14 – затруднительный пропуск сверхнор-

мативной нагрузки, сниженная грузоподъёмность и моральный износ конструк-
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ций. Наиболее распространенные типы поперечных сечений главных балок про-

летных строений мостов – это балки таврового поперечного сечения (рис. 1). 

 

     
 
Рис. 1. Наиболее распространенные типы пролетных строений, запроектированные под 

старые нагрузки: 

а – выпуск 56 инв. № 147/1; б – выпуск 56 (д); в – серия 3.503.1-81 [4] 

Fig. 1. The most common types of span structures designed for former load values:  

a – issue 56 inv. No. 147/1; b – issue 56 (d); c – series 3.503.1-81 [4] 

 

Пролетные строения мостов в процессе эксплуатации подвергаются фи-

зическому износу от интенсивной подвижной и тяжеловесной нагрузок, ударов 

негабаритных грузов, техногенных и природно-климатических воздействий – 

у балок пролетных строений появляются различные неисправности и дефекты 

[1–6], природа появления которых более подробно описана ниже. 

1. Разрушение гидроизоляции проявляется в обводнении конструкций 

главных балок пролетного строения с последующим образованием коррозии на 

боковых гранях балки и ее нижнем поясе. 

2. Удары от негабаритного транспорта и расположенных на нем грузов 

разрушают нижний пояс балок (образование сколов, продергивание арматурных 

стержней с одновременным выключением их из работы в зоне растяжения). 

3. Отсутствие или низкое качество капитального ремонта является при-

чиной устройства дорожной одежды с толщиной, превышающей норматив-

ную (рис. 2). 

4. Выщелачивание, характерные трещины, химическая коррозия с обна-

жением арматурного слоя, а также обрушение защитного слоя бетона связаны 

не только с разрушением гидроизоляции, но и с неправильным водоотводом 

с элементов мостового сооружения. 

5. Дефекты и нарушение работоспособности деформационных швов от-

рицательно влияют на трещиностойкость балочных элементов моста: при их 

смещении или нарушении целостности может образовываться система трещин 

с раскрытием более 0,3–0,4 мм. 

6. Раковины на поверхности главных балок пролетного строения – это 

один из технологических недостатков при бетонировании конструкции, в буду-

щем непосредственно влияющий на снижение надежности работы конструкции. 

7. Карбонизация поверхности бетона приводит к снижению его щелочно-

сти и, как следствие, к ускоренной коррозии арматуры. 

Таким образом, данные дефекты и неисправности отрицательно влияют 

на несущую способность и со временем могут приводить мостовые сооружения 

к аварийному техническому состоянию с угрозой обрушения пролетных кон-

а б в 
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струкций мостов на участках автомобильных дорог. Эффективным способом 

восстановления несущей способности главных балок железобетонных пролет-

ных строений мостов является метод усиления их полимерными композицион-

ными материалами [7–15]. Дальнейшее развитие данного направления было 

связано с применением предварительно напряженных полимерных композици-

онных материалов – углеродных ламелей (преднапряженные ПКМ). При этом 

для использования преднапряженных ПКМ требовалась разработка технологии 

преднапряжения ламелей с использованием специальных устройств [13–16], 

а также проведение лабораторных экспериментов, которые были реализованы 

[11]. Следующий шаг, необходимый для полноценного внедрения в практику 

строительства мостов технологии преднапряжения ПКМ, – это разработка ме-

тодики расчета главных балок железобетонных пролетных строений мостов, 

усиленных преднапряженными ПКМ, которая представлена ниже. 

 

 
 

Рис. 2. Завышенная толщина дорожной одежды на автодорожных мостах [4] 

Fig. 2. Excessive thickness of the road pavement on bridges 

 

Методика расчета подразумевает рассмотрение трех стадий напряженно-

деформированного состояния изгибаемого железобетонного элемента. Первая 

стадия соответствует действию усилий на главные балки от полных расчетных 

постоянных нагрузок, вторая стадия – действие усилий от предварительного 

напряжения полимерных композиционных материалов, третья стадия соответ-

ствует предельному состоянию с учетом напряженно-деформированного со-

стояния конструкций первой и второй стадий. 

На рис. 3 показано расположение внутренних усилий и формы эпюр нор-

мальных напряжений в сжатой и растянутой зоне бетона для трех стадий напря-

женно-деформированного состояния для сечения. 
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Рис. 3. Стадии работы изгибаемого железобетонного элемента: 

а – стадия № 1 (нагрузка от собственного веса балки); б – стадия № 2 (стадия пред-

напряжения ПКМ, установленного на нижней грани балочного элемента); в – ста-

дия № 3 (предельное состояние, полное включение в работу с балочным элемен-

том материала ПКМ) 

Fig. 3. Performance stages of a flexural reinforced concrete element: 

a – stage 1 (dead load); b – prestress stage 2 (polymer composite installed on the lower 

beam edge); c – stage 3 (ultimate state, full engagement of the polymer composite) 

а 

б 

в 
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При расчете усиленных железобетонных конструкций следует ограничи-

вать напряжения в полимерном композиционном материале предельной вели-

чиной, что предотвращает возможность разрушения бетонного основания, на 

которое нанесен композиционный материал, или его возможное отслоение по 

контакту «клей-бетон». Значение предельных напряжений в материале усиле-

ния, расположенном на нижней грани балки, следует определять по формуле 

 ( )b ft f
fu s c ft fc

f

R E b
k R

t
 =   −


, (1) 

где ks – коэффициент, учитывающий тип конструкции усиления; bf – единичная 

ширина полосы материала усиления; tf – толщина одного слоя композицион-

ного материала, мм; Ef – модуль упругости композиционного материала, МПа. 

Нормальные напряжения bI, sI, ’sI, bc, sc и ’sc определяются с ис-

пользованием нелинейной деформационной модели. Принятая в расчетах диа-

грамма деформирования бетона приведена на рис. 4. На участке диаграммы  

0–1 зависимость между напряжениями и деформациями в бетоне принята по 

формуле ( )1b b bE =  − , а на участке 0–2 – по формуле b b bE =  . 

 

 
 

Рис. 4. Диаграмма деформирования бетона при одноосном сжатии и растяжении 

Fig. 4. Stress-strain curve of concrete at uniaxial compression and tension 

 

Функция пластичности для бетона принята в виде 

 
4

b b

b

E

R


 = , (2) 

где Rb − расчетное сопротивление бетона сжатию. 

Диаграмма деформирования рабочей арматуры принята в виде диа-

граммы Прандтля (рис. 4). На участке диаграммы 0–1 напряжения в арматуре 

определяются по закону Гука [1], участок 1–2 соответствует площадке текуче-

сти, для которой s = Rs (рис. 5). 

Относительные деформации в нормальном сечении элемента определя-

ются по формуле 

 
redb

M M
y

E I

 + = , (3)
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где M  – внутренний момент в нормальном сечении элемента от действия 

внешних сил; M – внешний изгибающий момент; Ired – приведенный момент 

инерции нормального сечения; y – координата по высоте сечения, начало кото-

рой расположено на уроне нейтральной оси. 

 

 
 

Рис. 5. Диаграмма деформирования арматуры 

Fig. 5. Reinforcement strain diagram 

 

Внутренний момент в нормальном сечении определяется по формуле 

 
1 1

n mb b s s s
i i k k ki kA

M y dA y A = =
=  +   , (4) 

где n – количество слоев бетона в нормальном сечении с различными прочност-

ными и деформативными характеристиками; m – количество стержней рабочей 

арматуры; A – площадь нормального сечения; Ak
s – площадь поперечного сече-

ния k-го стержня рабочей арматуры. 

Выводы 

В результате проведенных экспериментальных испытаний [9, 11] создано 

обоснование инженерной методики расчета преднапряженных изгибаемых эле-

ментов по определению несущей способности усиленных железобетонных эле-

ментов мостов. 

Методика расчета преднапряженных ПКМ изгибаемых железобетонных 

элементов основана на методе предельных состояний и учитывает три стадии 

напряженно-деформированного состояния эксплуатируемых главных балок 

железобетонных пролетных строений автодорожных мостов, подвергаемых 

усилению предварительно напряженными ПКМ. 
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