ТЕПЛОСНАБЖЕНИЕ, ВЕНТИЛЯЦИЯ, КОНДИЦИОНИРОВАНИЕ ВОЗДУХА, ГАЗОСНАБЖЕНИЕ И ОСВЕЩЕНИЕ

УДК 697.7:681.5.01(571.56)

ХУТОРНОЙ АНДРЕЙ НИКОЛАЕВИЧ, канд. техн. наук, доцент, khantgs@mail.ru

ЦВЕТКОВ НИКОЛАЙ АЛЕКСАНДРОВИЧ, докт. техн. наук, профессор, nac.tsuab@yandex.ru

КРИВОШЕИН ЮРИЙ ОЛЕГОВИЧ, аспирант,

khantgs@mail.ru

КУЗНЕЦОВА АНАСТАСИЯ АЛЕКСЕЕВНА, магистрант,

kusnezowa1803@mail.ru

Томский государственный архитектурно-строительный университет, 634003, г. Томск, пл. Соляная, 2

ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ СОЛНЕЧНЫХ ВАКУУМНЫХ ТРУБЧАТЫХ КОЛЛЕКТОРОВ В ПРИРОДНО-КЛИМАТИЧЕСКИХ УСЛОВИЯХ ЯКУТИИ*

В работе представлен опыт использования солнечных вакуумных трубчатых коллекторов для приготовления горячей воды для двух жилых домов в Якутии. Выполнен анализ данных о солнечной радиации на территории Республики САХА, представленных в нормативных источниках. Произведен расчет среднемесячного дневного и годового прихода солнечной радиации на приемную площадку солнечных коллекторов, и определен оптимальный угол наклона коллекторов к горизонту.

Ключевые слова: нормативные источники; приемная площадка; солнечные вакуумные трубчатые коллекторы; солнечная радиация.

ANDREI N. KHUTORNOI, PhD, A/Professor,

khantgs@mail.ru

NIKOLAY A. TSVETKOV, DSc, Professor,

nac.tsuab.@yndex.ru

OLEG Y. KRIVOSHEIN, Research Assistant,

khantgs@mail.ru

ANASTASIIA A. KUZNETSOVA, Undergraduate Student,

kusnezowa1803@mail.ru

Tomsk State University of Architecture and Building,

2, Solyanaya Sq., 634003, Tomsk, Russia

^{*} Работа выполнена при финансовой поддержке гранта РФФИ (проект № 16-48-700367).

[©] Хуторной А.Н., Цветков Н.А., Кривошеин Ю.О., Кузнецова А.А., 2016

EFFECTIVE UTILIZATION OF VACUUM TUBE SOLAR COLLECTORS IN CLIMATIC CONDITIONS IN YAKUTIA

The paper describes the practical experience in using vacuum tube solar collectors for water heating in two residential houses in Yakutia. The research results on solar radiation in the Republic of Sakha are analyzed and presented in standard documents. The average monthly and annual solar radiation input to the receiving area of solar collectors is calculated and the optimum angle of collector inclination is determined in relation to the horizon.

Keywords: regulatory documents; receiving area; vacuum tube solar collector; solar radiation.

Практическое использование солнечной энергии в России в настоящее время находит наибольшее применение в Краснодарском крае [1], однако непрерывное совершенствование технологий использования возобновляемых источников энергии позволяет применять рациональные инженерные решения не только в районах с теплым климатом, но и на территориях с достаточно суровыми климатическими условиями [2–4].

Так, в работе [3] показан опыт эксплуатации солнечных вакуумных трубчатых коллекторов, для приготовления горячей воды для двух 23-квартирных жилых домов в Республике САХА (административный округ «Жатай», г. Якутск). Расчет площади солнцепоглощающей поверхности коллекторов производился по методике, представленной в ВСН 52-86 «Установки солнечного горячего водоснабжения». На кровле одного из этих домов (ул. Матросова, 9) был установлен 21 коллектор по 20 трубок в каждом с ориентацией на юг. Опыт эксплуатации этой системы в летний период указал на неверно подобранное количество трубок, т. к. система выдавала большое количество избыточной тепловой энергии. Учитывая этот опыт, на втором доме (ул. Комсомольская, 3) было установлено 16 коллекторов по 20 трубок в каждом.

Одной из причин неверно подобранного количества трубок может являться отсутствие достоверной информации о количестве солнечной радиации, поступающей на наклонную поверхность коллекторов.

Целью данной работы является проведение анализа исходных данных о значениях солнечной радиации на территории Республики САХА (Якутия).

Первым нормативным документом, содержащим сведения о солнечной радиации, является СНиП II-А.6-62 «Строительная климатология и геофизика. Основные положения проектирования», 1963 г. В данном источнике приведены значения суточной и максимальной часовой прямой и рассеянной солнечной радиации, поступающей в июне на горизонтальную и вертикальную поверхность южной, северной, западной и восточной ориентации при безоблачном небе. Также в данном источнике представлены сведения о значениях средней суммарной (прямой и рассеянной) солнечной радиации, поступающей на горизонтальную поверхность, по месяцам и за год для городов Алдан, Верхоянск, Среднеколымск, Якутск и сел Оймякон и Оленек (табл. 1). Хотелось бы обратить внимание на то, что данные о солнечной радиации, представленные в СНиП II-А.6-62, приведены для безоблачного неба, что в действительности, особенно для районов Сибири, бывает довольно редко. И эта особенность пред-

ставления данных стала характерной для последующих строительных норм и правил, в которых приводятся климатологические характеристики.

Таблица 1 Сведения о солнечной радиации, поступающей на горизонтальную поверхность

Населенный		Месяцы											
пункт	1	2	3	4	5	6	7	8	9	10	11	12	Год
	СНиП II-А.6–62 (1963 г.), ккал/(м 2 ·ч) (при безоблачном небе)												
				-							•		
Алдан	15	43	97	180	199	217	177	135	96	54	23	11	104
Верхоянск	1	25	75	164	191	220	190	137	72	35	4	0	96
Оймякон	8	37	109	185	215	211	195	174	93	48	15	4	108
Оленек	0	16	71	154	202	224	220	127	58	27	4	0	92
Среднеколымск	1	21	79	171	234	205	196	128	72	31	4	0	95
Якутск	9	37	103	178	191	233	200	159	96	45	17	5	106
Справочник по климату СССР, выпуск 24 (1967 г.), ккал/см ²													
(при средних условиях облачности)													
Котельный, остров	0	0,2	3,1	9,8	16,2	15,6	11,1	6,9	3,0	0,6	0	0	66,5
Преображения, остров	0	0,3	3,3	9,3	15,2	15,2	13,0	7,2	2,8	0,7	0	0	67,0
Тикси, бухта	0	0,7	4,6	10,9	16,2	14,0	12,7	7,6	3,5	1,2	0,1	0	71,5
Четырехстол- бовой, остров	0	0,8	4,8	10,9	16,0	15,6	13,8	7,9	3,6	1,4	0,1	0	74,9
Оленек	0,1	1,2	5,3	11,0	15,2	14,5	14,2	8,8	4,5	2,0	0,3	0	77,1
Верхоянск	0,2	1,5	6,0	11,6	15,0	15,7	14,2	10,4	5,4	2,5	0,4	0	82,9
Среднеколымск	0,1	1,4	6,2	12,2	17,5	16,0	14,1	9,4	5,1	2,2	0,5	0	84,7
Оймякон	0,7	2,8	8,1	13,7	15,8	15,6	14,6	12,6	6,9	3,8	1,3	0,3	96,2
Сунтар-Хаята	0,6	3,3	8,8	15,2	20,7	19,2	14,7	11,6	8,4	4,9	1,3	_	_
Туой-Хая	0,8	2,5	7,2	10,8	12,5	14,5	14,0	10,7	5,9	2,8	1,2	0,4	83,3
Якутск	0,9	2,8	7,7	11,9	13,5	15,1	14,4	10,6	6,6	3,3	1,3	0,5	88,6
Алдан	1,5	3,6	8,7	12,6	14,5	15,0	13,8	9,8	6,7	4,3	1,8	0,9	93,2
		CI		I-А.6– при бе				л/(м ² ·ч)				
Алдан	20	54	117	175	195	208	185	132	93	58	25	12	106
Верхоянск	3	22	81	161	202	218	191	140	75	33	6	0	94
Котельный, остров	0	3	42	136	218	217	149	93	42	8	0	0	75
Оленек	1	18	71	153	204	201	191	118	62	27	4	0	87
Оймякон	10	42	109	190	212	217	196	169	96	51	18	4	109

Продолжение табл. 1

Населенный Месяцы													
Населенный		I _	Ι.	l .	I _				l .				Год
пункт	1	2	3	4	5	6	7	8	9	10	11	12	
Преображения, остров	0	4	44	129	204	211	175	97	39	10	0	0	79
Среднеколымск	1	21	83	169	235	222	190	126	71	30	7	0	96
Тикси, бухта	0	10	62	151	218	194	171	102	48	16	1	0	81
Туой-Хая	11	37	97	150	168	201	188	144	82	38	17	5	94
Четырехстол- бовый, остров	0	12	64	151	215	217	185	106	50	19	1	0	85
Якутск	12	42	104	165	181	210	194	142	92	44	18	6	100
Справочное пособие к СНиП 2.01.01–82 (1990 г.), МДж/м 2 (при действительных условиях облачности)													
Алдан	57	143	343	501	595	607	574	423	270	170	73	34	
Верхоянск	6	69	243	463	605	647	603	415	222	95	15	0	
Котельный, остров	0	6	124	400	643	618	467	279	111	23	0	0	
Оленек	3	44	222	450	616	607	618	376	186	82	10	0	
Оймякон	27	109	331	555	643	653	630	503	281	153	50	10	
Преображения, остров	0	11	136	402	657	636	551	299	113	29	0	0	
Среднеколымск	4	55	250	497	685	681	588	390	201	88	15	0	
Усть-Мома	8	63	239	477	641	678	624	427	226	109	17	0	
Тикси, бухта	0	25	178	429	664	605	530	304	132	44	4	0	
Туой-Хая	33	105	301	452	523	607	586	448	247	117	50	17	
Чернышевский	25	100	293	473	595	691	670	435	234	109	29	10	
Четырехстол- бовый, остров	0	31	199	448	666	668	582	331	157	54	4	1	
Якутск	32	107	314	492	591	651	618	450	270	134	50	17	
Научно-	прик			авочн						г.), М	І Дж/і	м ²	
Оленек	4		-	463	-					83	14	_	3262
Верхоянск	8	58	241	467	616	651	596	430	213	94	17	0	3391
Среднеколымск	8	58	246	503	659	651	550	398	204	90	18	0	3385
Усть-Мома	11	74	271	498	644	653	604	430	235	122	24	5	3571
Оймякон	30	114	340	566	649	672	657	505	291	159	50	16	4049
Чернышевский	32	103	300	496	602	647	646	448	261	118	47	16	3716
Якутск	34	114	329	509	591	658	627	469	283	141	54	18	3827
Алдан	61	149	340	497	611	614	600	460	279	170	83	41	3905

Окончание табл. 1

Населенный						Mecs	щы						Год
пункт	1	2	3	4	5	6	7	8	9	10	11	12	
Справочное пособие к СНиП 23-01-99* (2006 г.), Вт/м ²													
Алдан	23	63	136	204	227	242	215	154	108	67	29	14	123
Верхоянск	3	26	94	187	235	254	222	163	87	38	7	0	109
Котельный, остров	0	3	49	158	254	252	173	108	49	9	0	0	87
Оленек	1	21	83	178	237	234	222	137	72	31	5	0	101
Оймякон	12	49	127	221	247	252	228	197	112	59	21	5	127
Преображения, остров	0	5	51	150	237	245	204	113	45	12	0	0	92
Среднеколымск	1	24	97	197	273	258	221	147	83	35	8	0	112
Тикси, бухта	0	12	72	176	254	226	199	119	56	19	1	0	94
Якутск	14	49	121	192	211	244	226	165	107	51	21	7	116

В 1967 г. был издан Справочник по климату СССР [5], в котором представлены сведения о месячных и годовых суммах солнечной радиации, радиационном балансе, среднем месячном альбедо деятельной поверхности и прочие данные, необходимые для выполнения корректных теплотехнических расчетов для территории горного хребта Сунтар-Хаята, островов Котельный, Преображения, Четырехстолбовой, бухты Тикси, сел Оймякон, Оленек, Туой-Хая и для городов Верхоянск, Среднеколымск, Алдан, Якутск (табл. 1). Материалы, представленные в справочнике, собраны за период наблюдений не менее 4–5 лет¹.

В 1973 г. взамен СНиП II-А.6-62 ввелен СНиП II-А.6-72 «Строительная климатология и геофизика», в котором приведены аналогичные сведения о значениях солнечной радиации при безоблачном небе. Только в новом источнике данные о солнечной радиации (прямой и рассеянной), поступающей на горизонтальную поверхность, приведены для июля. Однако сведения о средней суммарной (прямой и рассеянной) солнечной радиации, поступающей на горизонтальную поверхность по месяцам и за год, приведены для большего количества населенных пунктов: островов Котельный, Преображения, Четырехстолбовой, бухты Тикси, сел Оймякон, Оленек, Туой-Хая и для городов Верхоянск, Среднеколымск, Алдан, Якутск (табл. 1).

В следующем за СНиП II-A.6-72 нормативном документе СНиП 2.01.01-82 «Строительная климатология и геофизика», вышедшем в 1983 г., приведены сведения из СНиП II-A.6-72, только в других единицах измерения (Bт/м²) и в уменьшенном объеме. А именно, отсутствуют сведения о средней суммарной (прямой и рассеянной) солнечной радиации, поступающей на горизонтальную поверхность по месяцам и за год. В 1990 г. к СНиП 2.01.01-82 было выпущено Справочное пособие, в котором эти сведения были представлены по ме-

¹ Справочник по климату СССР. Вып. 24. Якутская АССР. Ч. 1. Солнечная радиация, радиационный баланс и солнечное сияние. Л.: Гидрометеоиздат, 1967. 96 с.

сяцам, причем при действительных условиях облачности для территории Усть-Мома, островов Котельный, Преображения, Четырехстолбовой, бухты Тикси, сел Оймякон, Оленек, Туой-Хая, поселка городского типа Чернышевский и для городов Верхоянск, Среднеколымск, Алдан, Якутск (табл. 1).

В 1989 г. был издан Научно-прикладной справочник по климату СССР², в котором представлены результаты климатологической обработки наблюдений, проводимых на метеорологических станциях с длительными и однородными рядами наблюдений. Климатические характеристики солнечной радиации вычислены из рядов, относящихся в основном к периоду 1960–1980 гг. Для Томской области в справочнике приведена обширная информация о солнечной радиации, в числе которой сведения о суммах прямой, рассеянной, суммарной солнечной радиации и радиационного баланса за час, сутки, месяц и год, а также среднее месячное и среднее годовое альбедо деятельной поверхности при средних условиях облачности. Указанные сведения приведены по данным метеорологических станций, расположенных в селах Оймякон, Оленек, в поселке городского типа Чернышевский, в городах Верхоянск, Среднеколымск, Алдан, Якутск и на территории Усть-Мома на основании данных самопишущих приборов с длиной ряда записей более 10 лет (табл. 1).

Взамен СНиП 2.01.01–82 в 2000 г. вышел СНиП 23-01–99* «Строительная климатология», в котором приведены сведения о суммарной солнечной радиации (прямой и рассеянной), поступающей на горизонтальную и на вертикальную поверхность различной ориентации опять же при безоблачном небе. В 2006 г. вышло Справочное пособие к СНиП 23-01–99*, в котором приведены сведения о значениях суммарной солнечной радиации (прямой и рассеянной), поступающей на горизонтальную поверхность, по месяцам и за год для территории островов Котельный, Преображения, бухты Тикси, сел Оймякон, Оленек и для городов Верхоянск, Среднеколымск, Алдан, Якутск (табл. 1), однако не указано для каких условий облачности.

В 2010 г. был издан Атлас ресурсов солнечной энергии на территории России [5], в котором представлены данные о суммарной солнечной радиации, поступающей на горизонтальную, вертикальную и наклонную поверхность за разные периоды времени. Так, для г. Якутска годовое значение суммарной солнечной радиаций на горизонтальную поверхность составляет 3 кВт·ч/(м²·ден)ь. За период апрель-сентябрь – 5 кВт·ч/(м²·день), и за период июнь-август – 6 кВт·ч/(м²·день).

В 2013 г. вышла актуализированная редакция СНиП 23-01–99* в качестве свода правил СП 131.13330.2012 «Строительная климатология», сведения по солнечной радиации в котором повторяют данные из СНиП 23-01–99*, но в других единицах измерения.

Таким образом, анализ представленных в табл. 1 данных показывает, что во всех строительных нормах и правилах сведения о солнечной радиации приводятся для условий безоблачного неба, что не позволяет использовать их для проведения корректных теплотехнических расчетов солнечных водо-

² Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Вып. 24. Ч. 1–6. Якутская АССР. Л.: Гидрометеоиздат, 1989. 608 с.

нагревательных установок. Кроме того, в строительных нормах и правилах до $2000 \, \Gamma$. приводились данные интенсивности солнечной радиации в единицах: ккал/(м²·ч), BT/m², а начиная со $CHu\Pi \, 23-01-99*$, стали приводиться значения сумм радиации в единицах измерения: MДж/m², кBT·ч/m², что не позволяет выполнить анализ динамики изменения солнечной радиации по годам.

Безусловно, наиболее полная информация о солнечной радиации приведена в справочниках. Используя данные справочника³, выполним оценку влияния угла наклона солнечных коллекторов к горизонту на среднемесячный дневной и годовой приход солнечной радиации в климатических условиях г. Якутска и определим оптимальный угла наклона этих коллекторов. Расчет будем проводить по методу С. Клейна для приемной площадки солнечных коллекторов, ориентированной строго в южном направлении [6–8].

Среднемесячное значение суммарной солнечной радиации, поступающей на наклонную поверхность, определяется по формуле

$$E_{\beta} = R \cdot E_{\Gamma}, \tag{1}$$

где E_{Γ} — среднемесячное дневное количество суммарной солнечной радиации, поступающей на горизонтальную поверхность, МДж/(м²-сут); R — отношение среднемесячных дневных количеств солнечной радиации, поступающих на наклонную и горизонтальную поверхности, определяемое по формуле

$$R = \left(1 - \frac{E_{\Gamma}^{p}}{E_{\Gamma}}\right) K_{\Pi} + \frac{E_{\Gamma}^{p}}{E_{\Gamma}} \frac{1 + \cos\beta}{2} + \rho \frac{1 - \cos\beta}{2}, \qquad (2)$$

где E_{Γ}^{p} — среднемесячное дневное количество рассеянной солнечной радиации, поступающей на горизонтальную поверхность, МДж/(м²-сут); K_{Π} — среднемесячный коэффициент пересчета прямой солнечной радиации с горизонтальной поверхности на наклонную; β — угол наклона поверхности солнечного коллектора к горизонту; ρ — коэффициент отражения (альбедо) поверхности земли и окружающих тел.

Значения прямой и рассеянной солнечной радиации, поступающей на горизонтальную поверхность при средних условиях облачности, а также альбедо поверхности для г. Якутска приведены в табл. 2.

Среднемесячный коэффициент пересчета прямой солнечной радиации для приемной площадки с южной ориентацией имеет вид

$$K_{\Pi} = \frac{\cos(\varphi - \beta)\cos\delta\sin\omega_{3,H} + \frac{\pi}{180}\omega_{3,H}\sin(\varphi - \beta)\sin\delta}{\cos\varphi\cos\delta\sin\omega_{3} + \frac{\pi}{180}\omega_{3}\sin\varphi\sin\delta},$$
 (3)

где ϕ — широта местности, град; β — угол наклона приемной площадки к горизонту, град; δ — склонение солнца в средний день месяца, град; ω_3 , $\omega_{3,H}$ — часовой угол захода солнца на горизонтальной и наклонной поверхностях.

³ Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Вып. 24. Ч. 1–6. Якутская АССР. Л.: Гидрометеоиздат, 1989. 608 с.

Таблица 2 Значения прямой и рассеянной солнечной радиации, альбедо поверхности

	Месяцы года												
1	2	3	4	5	6	7	8	9	10	11	12		
	Сумма рассеянной солнечной радиации на горизонтальную поверхность при средних условиях облачности, МДж/(м ² ·сут)												
1,21	2,92	6,17	9,54	11,38	11,08			5,79	3,75	1,58	0,67		
Сум	ма сум	марной	(прямої	й и расс	еянной)	солнеч	ной ради	ации на	а гориз	онталь	ную		
	1	поверхн	ость при	и средни	их услов	иях обл	ачности,	МДж/	(м ² ·сут)			
1,42	4,75	13,71	21,21	24,63	27,42	26,13	19,54	11,79	5,88	2,25	0,75		
				Альб	едо пов	ерхност	и, %						
78	79	76	54	17	18	18	18	19	51	78	77		

Часовой угол захода (восхода) солнца для горизонтальной поверхности определяется по формуле

$$\omega_3 = \arccos(-\mathsf{tg}\phi\,\mathsf{tg}\delta)\,. \tag{4}$$

Для наклонной поверхности этот угол определяется по формуле

$$\omega_{3,H} = \min \left\{ \omega_3, \arccos\left(-tg(\varphi - \beta)tg\delta\right) \right\}.$$
 (5)

В качестве часового угла захода солнца для наклонной поверхности с южной ориентацией принимают меньшую из двух величин ω_3 или $\omega_{3\,\mathrm{H}}$.

Расчет среднемесячного дневного и годового прихода солнечной радиации на приемную площадку солнечных коллекторов, расположенную под разными углами β к горизонту по представленным выше зависимостям производился с шагом 1°. В табл. 3 приведены выборочные наиболее характерные результаты расчета, округленные до десятых величин.

Результаты расчета

Таблица 3

Vroz 0						Mec	яцы						Гол	ΔE , %
Угол β	I	II	II	IV	V	VI	VII	VIII	IX	X	XI	XII	ТОД	
15	2,0	6,9	17,8	23,8	25,5	27,6	26,7	21,2	14,0	7,8	3,7	1,1	4277	-14,0
20	2,2	7,6	19,1	24,6	25,6	27,6	26,8	21,5	14,7	8,4	4,2	1,2	4399	-11,6
23	2,3	8,0	19,8	24,9	25,6	27,5	26,7	21,7	15,0	8,7	4,4	1,3	4463	-10,3
34	2,7	9,3	22,1	26,0	25,4	26,9	26,3	22,0	15,9	9,8	5,3	1,5	4635	8,9–
46	3,0	10,5	24,0	26,5	24,4	25,6	25,2	21,6	16,4	10,7	6,2	1,7	4702	-5,5
50	3,1	10,8	24,5	26,6	24,0	25,0	24,7	21,4	16,5	10,9	6,4	1,7	4695	9,5-
52	3,1	11,0	24,7	26,6	23,7	24,7	24,4	21,2	16,5	11,0	6,5	1,7	4686	8,5-

Окончание табл. 3

Vroz 0						Mec	яцы						Год	ΔE , %
Угол β	I	II	II	IV	V	VI	VII	VIII	IX	X	XI	XII	ТОД	ΔE , 70
56	3,2	11,3	25,1	26,5	23,2	24,0	23,8	20,9	16,5	11,2	6,7	1,8	4657	-6,4
62	3,3	11,6	25,5	26,2	22,2	22,8	22,7	20,2	16,3	11,4	7,0	1,8	4586	-7,8
72	3,4	12,0	25,8	25,4	20,3	20,6	20,6	18,8	15,7	11,5	7,3	1,9	4398	-11,6
81	3,5	12,1	25,6	24,3	18,2	18,4	18,4	17,2	14,9	11,4	7,4	1,9	4158	-16,4
84	3,5	12,0	25,4	23,8	17,5	17,6	17,7	16,6	14,6	11,3	7,4	2,0	4064	-18,3
85	3,5	12,0	25,3	23,7	17,3	17,3	17,4	16,4	14,4	11,3	7,4	2,0	4031	-18,9
$E_{\text{опт}}$, $\frac{MДж}{\text{м}^2 \cdot \text{сут}}$	3,5	12,1	25,8	26,6	25,6	27,6	26,8	22,0	16,5	11,5	7,4	2,0	4974	
β _{опт} , град	84	81	72	50	23	15	20	34	52	72	84	85	56	

Результаты расчета, представленные в табл. 3, позволили определить оптимальный угол наклона приемной площадки к горизонту $\beta_{\text{опт}}$ в г. Якутске для каждого месяца года, при котором достигается максимальный среднемесячный приход солнечной радиации $E_{\text{опт}}$. Таким образом, в случае ежемесячной установки приемной площадки под углом, равным $\beta_{\text{опт}}$, годовой приход солнечной радиации на ее поверхность будет максимальным и составит $E_{\text{макс}}$ = 4974 МДж/(м²-год). Среднеарифметическая величина $\beta_{\text{опт}}$ составила 56°.

Также в табл. 3 приведены значения разницы между максимальным годовым приходом солнечной радиации $E_{\rm макс}$ и годовым приходом солнечной радиации $E_{\rm rog}$ на приемную площадку с углом установки, имеющим какоелибо постоянное значение, которая определялась из выражения

$$\Delta E = (E_{\text{rod}} - E_{\text{Make}}/E_{\text{Make}})100. \tag{6}$$

При установке приемной площадки под углом $\beta = 56^\circ$ годовой приход солнечной радиации на ее поверхность составит 4657 МДж/(м²-год), что на 6,4 % меньше $E_{\text{макс}}$, а при $\beta = 62^\circ$ (широта местности для г. Якутска) годовой приход солнечной радиации на ее поверхность составит 4586 МДж/(м²-год), что на 7,8 % меньше $E_{\text{макс}}$. Минимальное же значение ΔE для климатических условий г. Якутска достигается при угле наклона приемной площадки, равном 46°, и составляет 5,5 %.

Таким образом, достаточно простые расчеты с использованием зависимостей (1) – (6) позволяют определить постоянный угол наклона приемной площадки солнечных коллекторов, при котором достигается максимальный приход солнечной радиации на ее поверхность за год.

Библиографический список

- Бутузов, В.В. Гелиоустановки Краснодарского края / В.В. Бутузов, Е.В. Брянцева, И.С. Гнатюк // Промышленная Энергетика. – 2011. – № 7. – С. 45–47.
- 2. Сфера применения гелиосистем расширяется // Энергосбережение. 2014. № 7. С. 64–65.
- Цветков, Н.А. Автономное теплоснабжение малоэтажных зданий в республике САХА Якутия (п. Жатай) с использованием газовых котлов и энергии солнца / Н.А. Цветков, Ю.О. Кривошеин // Энерго-и ресурсоэффективность малоэтажных жилых зданий : сб. материалов II Всероссийской научной конференции с международным участием, ИТФ СО РАН, 24–26 марта 2015 г. С. 252–259.
- 4. *Кривошеин, Ю.О.* Разработка и реализация системы горячего теплоснабжения с использованием солнечной энергии / Ю.О. Кривошеин, Ф.В. Саврасов, Н.А. Цветков // Молодежь, наука, технологии: новые идеи и перспективы : материалы I Международной конф. студентов и мол. ученых, Томск, 11–12 ноября 2014 г. Томск : Изд-во Том. гос. архит.-строит. ун-та, 2014. С. 152–153.
- 5. *Атлас ресурсов* солнечной энергии на территории России / О.С. Попель, С.Е. Фрид, Ю.Г. Коломиец, С.В. Киселева, Е.Н. Терехова. М.: Изд-во МФТИ, 2010. 81 с.
- 6. *Харченко, Н.В.* Индивидуальные солнечные установки / Н.В. Харченко. М. : Энергоатомиздат, 1991. 206 с.
- 7. *Солнечная энергетика* / В.И. Виссарионов, Г.В. Дерюгина, В.А. Кузнецова, Н.К. Малинин ; под ред. В.И. Виссарионова. М. : Издательский дом МЭИ, 2008. 276 с.
- Бекман, У.А. Расчет систем солнечного теплоснабжения / У.А. Бекман, С.А. Клейн, Д.А. Даффи. – М.: Энергоиздат. 1982. – 80 с.

REFERENCES

- 1. Butuzov V.V., Bryantseva E.V., Gnatyuk I.S. Gelioustanovki Krasnodarskogo kraya [Solar systems of Krasnodar territory]. Industrial Power Engineering. 2011. No. 7. Pp. 45-47. (rus)
- 2. Sfera primeneniya geliosistem rasshiryaetsya [Scope of using solar systems]. Energosberezhenie. 2014. No. 7. Pp. 64–65. (rus)
- 3. Tsvetkov N.A., Krivoshein Y.O. Avtonomnoe teplosnabzhenie maloetazhnykh zdaniy v respublike SAKhA Yakutiya (p. Zhatay) s ispol'zovaniem gazovykh kotlov i energii solntsa [Independent heating of low-rise buildings in the Republic of Sakha Yakutia (v. Zhatay) with gas boilers and solar energy]. Coll. Papers 2nd Rus. Sci. Conf. 'Energy and Resource Efficiency of Low-Rise Residential Buildings'. 2015. Pp. 252–259. (rus)
- 4. Krivoshein Y.O., Savrasov F.V., Tsvetkov N.A. Razrabotka i realizatsiya sistemy goryachego teplosnabzheniya s ispol'zovaniem solnechnoy energii [Development and implementation of a hot heating systems using solar energy]. Proc. 1st Int. Conf. 'Youth, Science, Technology, New Ideas and Perspectives'. Tomsk: TSUAB Publ., 2014. Pp. 152–153. (rus)
- Spravochnik po klimatu SSSR. Vypusk 24. Yakutskaya ASSR. Ch. 1. Solnechnaya radiatsiya, radiatsionnyy balans i solnechnoe siyanie [Guide for the USSR climate. Issue 24. Yakut ASSR. Part 1. Solar radiation, radiation balance and sunshine]. Leningrad: Gidrometeoizdat, 1967. 96 p. (rus)
- Nauchno-prikladnoy spravochnik po klimatu SSSR. Seriya 3. Mnogoletnie dannye. Vypusk 24. Ch. 1–6. Yakutskaya ASSR [Applied scientific climate handbook USSR. Series 3. Long-term data. Issue 24. Ch. 1–6. Yakut ASSR]. Leningrad: Gidrometeoizdat, 1989. 608 p. (rus)
- 7. Popel' O.S., Frid S.E., Kolomiets Y.G., Kiseleva S.V., Terekhova E.N. Atlas resursov solnechnoy energii na territorii Rossii [Solar energy resources in Russia]. Mocow: MFTI Publ., 2010. P. 81. (rus)
- 8. *Kharchenko N.V.* Individual'nye solnechnye ustanovki [Individual solar installations]. Moscow: Energoatomizdat, 1991. 206 p. (rus)
- 9. *Vissarionov V.I., Deryugina G.V., Kuznetsova V.A., Malinin N.K.* Solnechnaya energetika [Solar power]. Moscow: MEI Publ., 2008. 276 p. (rus)
- Bekman U.A., Kleyn S.A., Daffi D.A. Raschet sistem solnechnogo teplosnabzheniya [Solar heating system analysis]. Moscow: Energoizdat, 1982. 80 p. (rus)