Вестник Томского государственного архитектурно-строительного университета. 2023. Т. 25. № 6. С. 113–124.

ISSN 1607-1859 (для печатной версии) ISSN 2310-0044 (для электронной версии)

НАУЧНАЯ СТАТЬЯ УДК 624.016 DOI: 10.31675/1607-1859-2023-25-6-113-124 Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2023; 25 (6): 113–124. Print ISSN 1607-1859 Online ISSN 2310-0044

EDN: WOJCIZ

НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ПРОСТРАНСТВЕННОГО СТРУКТУРНО-НЕОДНОРОДНОГО СТЕРЖНЯ

Андрей Викторович Мищенко

Новосибирский государственный архитектурно-строительный университет (Сибстрин), г. Новосибирск, Россия Новосибирское высшее военное командное ордена Жукова училище, г. Новосибирск, Россия

Аннотация. Актуальность. Неоднородные конструкции обладают рядом существенных преимуществ перед классическими однородными. Регулирование их напряженно-деформированного состояния дает возможность более эффективно адаптировать систему к заданным термосиловым воздействиям и в результате получить дополнительные эффекты экономии массы и стоимости конструкции. Практическое использование неоднородных элементов конструкций в настоящее время требует создания инженерных методов расчета, обладающих приемлемой трудоемкостью, необходимой точностью и универсальностью.

Целью настоящей работы является совершенствование способов построения комплекса необходимых физических соотношений в задачах термосилового пространственного деформирования неоднородных стержней.

Методы исследования. Для расчетной модели стержня Тимошенко применены аппроксимации функций поперечных сдвигов и мембранная аналогия для деформаций сдвига при кручении. Пространственный призматический стержень прямоугольного сечения образован из квазиоднородных частей (фаз), выполненных из различных конструкционных материалов.

Результаты. Получены расчетные соотношения для термосилового пространственного изгиба с растяжением, поперечного сдвига и кручения. Данные уравнения содержат жесткостные характеристики нулевого, первого и второго порядков при изгибе с растяжением, сдвиговые и крутильную жесткости сечения. Их применение позволяет компактно сформулировать физические зависимости и краевую задачу пространственного деформирования неоднородного стержня.

Ключевые слова: структурно-неоднородный стержень, пространственный изгиб, жесткостные характеристики неоднородного сечения, кручение неоднородного стержня, мембранная аналогия

Для цитирования: Мищенко А.В. Напряженно-деформированное состояние пространственного структурно-неоднородного стержня // Вестник Томского государственного архитектурно-строительного университета. 2023. Т. 25. № 6. С. 113–124. DOI: 10.31675/1607-1859-2023-25-6-113-124. EDN: WOJCIZ

© Мищенко А.В., 2023

ORIGINAL ARTICLE

STRESS-STRAIN STATE OF ROD WITH HETEROGENEOUS STRUCTURE

Andrey V. Mishchenko

Novosibirsk State University of Architecture and Civil Engineering, Novosibirsk, Russia Order of Zhukov Novosibirsk Higher Military Command School, Novosibirsk, Russia

Abstract. Heterogeneous structures have a number of significant advantages over classical homogeneous. Their stress-strain state control allows to more effectively adapt the system to given thermal conditions and, as a result, additionally save weight and cost of the structure. The practical use of elements with heterogeneous structure, requires the creation of engineering calculation approaches with acceptable labor intensity, accuracy and versatility.

Purpose: The improvement of design methods implying physical relations in problems of thermal power deformation of rods with heterogeneous structure.

Design/methodology: The Timoshenko rod model design involves the approximation of transverse shear functions and membrane analogy of shear deformation in torsion. A threedimensional prismatic rod having a rectangular cross-section, is obtained from quasi-homogeneous parts (phases) made of various structural materials.

Research findings: Theoretical calculations are obtained for thermal power spatial bending with tension, transverse shear and torsion. These equations contain stiffness characteristics of zero, first- and second-order tensile bending, shear and torsional stiffnesses of the section.

Practical implication: These equations can be used to compactly formulate physical relations and the boundary value problem of spatial deformation of rods with heterogeneous structure.

Keywords: rod with heterogeneous structure, spatial bending, rigidity, non-uniform section, torsion, membrane analogy

For citation: Mishchenko A.V. Stress-strain state of rod with heterogeneous structure. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta – Journal of Construction and Architecture. 2023; 25 (6): 113–124. DOI: 10.31675/1607-1859-2023-25-6-113-124. EDN: WOJCIZ

Введение

Неоднородные конструкции, запроектированные с использованием принципов рационального проектирования, обладают рядом неоспоримых преимуществ перед однородными [1, 2, 3, 4]. Основными из них являются: а) способность более эффективно адаптироваться к заданным физическим полям [5]; б) возможность регулирования напряженно-деформированного состояния; в) получение экономии массы и стоимости материалов конструкции. В силу сложности объекта исследования – пространственно деформируемого неоднородного стержня, испытывающего силовое и тепловое воздействия, в литературе обычно рассматриваются различные частные случаи расчетных схем: плоские задачи [1, 6, 7, 8], простые виды воздействия на отдельные элементы конструкций [9, 10] либо, при усложнении воздействий, – стержни простой геометрической формы с частными случаями неоднородности [9]. Спецификой неоднородных конструкций является их чувствительность к тепловым воздействиям [5, 11, 12]. В ряде работ уточненные методы расчета

Вестник ТГАСУ. 2023. Т. 25. № 6

строятся без привлечения гипотез теории стержней. Так, в работе [13] для построения инженерной теории сопротивления неоднородных стержней применено разложение решения исходной задачи в ряд по производным деформаций сопутствующей задачи однородного стержня. В нулевом приближении предложенный метод дает классическое решение. В работах [14, 15] для исследования пространственных задач применен метод асимптотического расщепления. Данные подходы [13, 14, 15], а также численные [7, 16, 17, 18] и экспериментальные [8, 19] исследования весьма ценны для оценки различных приближенных методов.

При практическом использовании неоднородных конструкций в настоящее время требуется создание инженерных методов расчета, обладающих приемлемой трудоемкостью и универсальностью, позволяющих выполнять оценку напряженно-деформированного состояния при комбинированном пространственном воздействии. В настоящей работе рассматривается постановка задачи и способ построения основных расчетных соотношений для задачи термосилового пространственного деформирования неоднородного стержня. При этом в решении задачи кручения и краевой задачи общего деформирования стержня дополнительно использованы ограничения симметрии расчетной схемы относительно продольных координатных плоскостей.

Материалы и методы исследования

На рис. 1 в системе координат *xyz* показан прямой стержень, испытывающий пространственный изгиб в сочетании с растяжением (сжатием), кручением и тепловым стационарным воздействием.

Puc. 1. Расчетная схема стержня *Fig. 1.* Schematic view of the rod

Стержень составлен из *s* квазиоднородных частей (фаз), выполненных из различных конструкционных материалов: металлов, бетона, конструкционных пластмасс, древесины, искусственных дисперсных композитов и т. п. с обеспечением идеального межфазного контакта при отсутствии разрывов в деформациях на границах фаз. Материал *k*-й фазы характеризуется стационарными в рассматриваемом диапазоне температур физическими характеристиками: модулями упругости E_k , G_k , коэффициентами температурного расширения α_k . На основе решения задачи стационарной теплопроводности в неоднородной структуре выявлено поле температур $t_k(x, y, z)$ (k = 1, ..., s). Стержень имеет призматическую форму, прямоугольное поперечное сечение и симметричную относительно плоскостей *xy*, *xz* структуру.

Вестник ТГАСУ. 2023. Т. 25. № 6

Считая стержень тонким, примем при описании его деформированного состояния гипотезы Тимошенко с дополнительным учетом депланации сечений при кручении. Построение основных соотношений рассмотрим отдельно для случаев пространственного изгиба, поперечного сдвига и кручения.

1. Пространственный термосиловой изгиб с растяжением (сжатием). Функции перемещений u, v, w в направлении осей x, y, z, деформаций ε и сдвигов γ примем согласно выражениям:

$$u(x, y, z) = u_0 - \theta_z y + \theta_y z, \quad v(x, y, z) = v_0, \quad w(x, y, z) = w_0,$$

$$\varepsilon_x(x, y, z) = \varepsilon_0 - \kappa_z y + \kappa_y z, \quad \varepsilon_y(x, y, z) = \varepsilon_z(x, y, z) = 0,$$

$$\kappa_y(x) = \frac{d\theta_y}{dx}, \quad \kappa_z(x) = \frac{d\theta_z}{dx},$$

$$\gamma_{xy}(x, y, z) = \frac{dv_0}{dx} - \theta_z = \gamma_{y0}(x),$$

$$\gamma_{xz}(x, y, z) = \frac{dw_0}{dx} + \theta_y = \gamma_{z0}(x), \quad \gamma_{yz} = 0,$$

(1)

где $u_0(x)$, $v_0(x)$, $w_0(x)$ – перемещения точек геометрической оси; $\theta_y(x)$, $\theta_z(x)$ – углы поворота сечений относительно осей *y*, *z*.

Интегральные силовые факторы в сечении *s*-фазного стержня заданы формулой

$$\left[N, M_{z}, M_{y}\right](x) = \sum_{k=1}^{s} \iint_{A_{k}} \left[\sigma_{x}^{(k)}, -y\sigma_{x}^{(k)}, z\sigma_{x}^{(k)}\right] dA, \qquad (2)$$

где A_k – площадь *k*-й фазы в нормальном сечении.

Подставив в (2) выражение закона Дюамеля – Нэймана

$$\sigma_x^{(k)} = E_k \left[\varepsilon_x - \alpha_k t_k \right], \tag{3}$$

при учете (1) для деформации ε_x , получим физические соотношения, связывающие интегральные силовые факторы с обобщенными деформациями при термоупругом изгибе с растяжением

$$\begin{cases} D_0 \varepsilon_0 - D_z \kappa_z + D_y \kappa_y = N - N_t, \\ -D_z \varepsilon_0 + D_{zz} \kappa_z - D_{yz} \kappa_y = M_z - M_{zt}, \\ D_y \varepsilon_0 - D_{yz} \kappa_z + D_{yy} \kappa_y = M_y - M_{yt}. \end{cases}$$
(4)

Здесь интегральные температурные силовые факторы

$$N_{t} = -\sum_{k=1}^{s} E_{k} \alpha_{k} \iint_{A_{k}} t_{k} dA, \quad M_{zt} = \sum_{k=1}^{s} E_{k} \alpha_{k} \iint_{A_{k}} t_{k} y dA, \quad M_{yt} = -\sum_{k=1}^{s} E_{k} \alpha_{k} \iint_{A_{k}} t_{k} z dA \quad (5)$$

представляют собой усилия в неоднородном сечении, возникающие при наличии температурного поля t(y, z) и отсутствии деформаций ($\varepsilon_0 = \kappa_z = \kappa_y = 0$).

Коэффициенты при обобщенных деформациях в (4) образуют матрицу жесткости с компонентами

$$D_{0} = \sum_{k=1}^{s} E_{k} \iint_{A_{k}} dA, \quad \left[D_{z}, D_{y} \right] = \sum_{k=1}^{s} E_{k} \iint_{A_{k}} [y, z] dA,$$

$$\left[D_{zz}, D_{zy}, D_{yy} \right] = \sum_{k=1}^{s} E_{k} \iint_{A_{k}} [y^{2}, yz, z^{2}] dA$$
(6)

нулевого (D_0) , первого (D_z, D_y) и второго (D_{zz}, D_{zy}, D_{yy}) геометрических порядков. В работе [13] жесткости D_z , D_y названы жесткостями взаимного влияния: а) осевой деформации ε_0 на изгибающие моменты и б) кривизн κ_z , κ_y на продольную силу.

Разделив в системе (4) первое уравнение на D_0 , второе на D_{zz} , а третье на $D_{_{yy}}$, получим

$$\begin{cases} \varepsilon_{0} - y_{0}\kappa_{z} + z_{0}\kappa_{y} = \frac{N - N_{t}}{D_{0}}, \\ -\frac{y_{0}}{i_{z}^{2}}\varepsilon_{0} + \kappa_{z} - \frac{i_{yz}^{2}}{i_{z}^{2}}\kappa_{y} = \frac{M_{z} - M_{zt}}{D_{zz}}, \\ \frac{z_{0}}{i_{y}^{2}}\varepsilon_{0} - \frac{i_{yz}^{2}}{i_{y}^{2}}\kappa_{z} + \kappa_{y} = \frac{M_{y} - M_{yt}}{D_{yy}}, \end{cases}$$

$$y_{0} = \frac{D_{z}}{D_{0}}, \ z_{0} = \frac{D_{y}}{D_{0}}, \ i_{z} = \sqrt{\frac{D_{zz}}{D_{0}}}, \ i_{y} = \sqrt{\frac{D_{yy}}{D_{0}}}, \ i_{yz} = \sqrt{\frac{D_{yz}}{D_{0}}}.$$
(7)

Выражения (8) определяют жесткостные параметры неоднородного сечения: y_0 , z_0 – координаты центра жесткости сечения; осевые i_z , i_y и центробежный i_{yz} – радиусы жесткости сечения.

Нормальные напряжения (3) с использованием (1), (7) для неоднородного сечения общего вида представим в форме

$$\sigma_{x}^{(k)} = \frac{E_{k}}{D} \left\{ \frac{N - N_{t}}{D_{0}} \left[1 - \frac{i_{yz}^{4}}{i_{z}^{2}i_{y}^{2}} + \left(\frac{i_{yz}^{2}}{i_{y}^{2}}z_{0} - y_{0} \right) \frac{y}{i_{z}^{2}} + \left(\frac{i_{yz}^{2}}{i_{z}^{2}}y_{0} - z_{0} \right) \frac{z}{i_{y}^{2}} \right] - \frac{M_{z} - M_{zt}}{D_{zz}} \left[\frac{i_{yz}^{2}}{i_{y}^{2}}z_{0} - y_{0} + \left(1 - \frac{z_{0}^{2}}{i_{y}^{2}} \right) y + \left(y_{0}z_{0} - i_{yz}^{2} \right) \frac{z}{i_{y}^{2}} \right] + \frac{M_{y} - M_{yt}}{D_{yy}} \left[\frac{i_{yz}^{2}}{i_{z}^{2}}y_{0} - z_{0} + \left(y_{0}z_{0} - i_{yz}^{2} \right) \frac{y}{i_{z}^{2}} + \left(1 - \frac{y_{0}^{2}}{i_{z}^{2}} \right) z \right] \right\} - E_{k}\alpha_{k}t_{k}, \quad (9)$$

$$D = 1 - \frac{i_{yz}^{4}}{i_{y}^{2}i_{z}^{2}} + \left(\frac{i_{yz}^{2}}{i_{y}^{2}}z_{0} - y_{0} \right) \frac{y_{0}}{i_{z}^{2}} + \left(\frac{i_{yz}^{2}}{i_{z}^{2}}y_{0} - z_{0} \right) \frac{z_{0}}{i_{y}^{2}}.$$

В случае симметричного сечения, принятого в настоящей статье, либо при выполнении перехода к главным центральным осям жесткости, обеспечивающим для жесткостей взаимного влияния выполнение условий $D_{y} = D_{z} = D_{yz} = 0$, а значит, согласно (8), $y_{0} = z_{0} = i_{yz} = 0$, D = 1, матрица жесткости системы (4) принимает диагональный вид, система (7) распадается на три независимых уравнения, что позволяет впоследствии решать краевые задачи для двух плоских изгибов и растяжения раздельно. В этом случае нормальные напряжения (9), действующие в k-й фазе при силовом и тепловом воздействиях, могут быть найдены по формуле

$$\sigma_x^{(k)} = E_k \left(\frac{N - N_t}{D_0} - \frac{M_z - M_{zt}}{D_{zz}} y + \frac{M_y - M_{yt}}{D_{yy}} z - \alpha_k t_k \right),$$
(10)

что согласуется с формулами, полученными в [6].

Примечательным является факт инвариантности значения определителя матрицы жесткости при параллельном переносе осей у, z системы координат. При использовании системы (4) и (7) соответственно имеем

$$\det \begin{vmatrix} D_0 & -D_z & D_y \\ -D_z & D_{zz} & -D_{yz} \\ D_y & -D_{yz} & D_{yy} \end{vmatrix} = D_0 D_{yy} D_{zz}, \ \det \begin{vmatrix} 1 & -y_0 & z_0 \\ -\frac{y_0}{i_z^2} & 1 & -\frac{i_{yz}^2}{i_z^2} \\ \frac{z_0}{i_y^2} & -\frac{i_{yz}^2}{i_z^2} \end{vmatrix} = 1.$$

2. Пространственный поперечный сдвиг. Примем для стержня Тимошенко аппроксимации сдвигов в виде

$$\gamma_{xy}(x, y, z) = a_y(x) f_y(y),$$

$$\gamma_{xz}(x, y, z) = a_z(x) f_z(z)$$
(10)

с амплитудами a_y , a_y и заданными функциями распределения f_y , f_z , удовлетворяющими граничным условиям на поверхностях $f_{y}(y) = 0, \quad y = \pm h/2,$

$$f_z(z) = 0, \quad z = \pm b / 2.$$

Схожая аппроксимация применена для пластин в [2]. Используя закон Гука и условия равновесия

$$\left[\mathcal{Q}_{y},\mathcal{Q}_{z}\right](x) = \sum_{k=1}^{s} \iint_{A_{k}} \left[\tau_{yx}^{(k)},\tau_{zx}^{(k)}\right] dA, \qquad (11)$$

получим формулы для касательных напряжений в *k*-й фазе

~ ~ ^ /

$$\tau_{xy}^{(k)}(z, y, z) = \frac{Q_y G_k f_y(y)}{\sum_{j=1}^s G_j \iint_{A_j} f_y dA}, \quad \tau_{xz}^{(k)}(z, y, z) = \frac{Q_z G_k f_z(z)}{\sum_{j=1}^s G_j \iint_{A_j} f_z dA}.$$
 (12)

Учитывая (10), (11), (12), жесткости неоднородного сечения при сдвигах, входящие в физические соотношения

$$D_{Qy}\gamma_{y0} = Q_y, \ D_{Qz}\gamma_{z0} = Q_z, \tag{13}$$

можно записать в виде

$$D_{Qy} = \frac{1}{k_y} \sum_{k=1}^{s} G_k \iint_{A_k} f_y dA, \ D_{Qz} = \frac{1}{k_z} \sum_{k=1}^{s} G_k \iint_{A_k} f_z dA,$$
(14)
$$k_y = \frac{\gamma_{y0}}{a_y}, \ k_z = \frac{\gamma_{z0}}{a_z}.$$

Параметры k_y , k_z представляют собой коэффициенты осреднения функций деформаций сдвига (10) при введении обобщенных сдвигов γ_{y0} , γ_{z0} в кинематических соотношениях (1). В частности, значению $k_y = 1$ соответствует принятие в качестве γ_{y0} максимального сдвига. При интегральном осреднении следует положить $k_y = \frac{1}{h} \int_{-h/2}^{h/2} f_y dy$, $\gamma_{y0} = k_y a_y$. Принятие, например, параболической функции $f_y = 1 - (2y/h)^2$ дает значение $k_y = 2/3$.

Для стержней с простой геометрической формой фаз, например слоистых, касательные напряжения τ_{xy} , τ_{xz} могут быть найдены более строго – из условий равновесия сдвигаемых частей сечения:

$$\tau_{yx}^{(k)}(z, y, z) = \frac{Q_y D_z^{\text{sec}}}{D_{zz}} \frac{G_k}{\sum_{j \in j_y} G_j(z) b_j(y)}, \ \tau_{xz}^{(k)}(z, y, z) = \frac{Q_z D_y^{\text{sec}}}{D_{yy}} \frac{G_k}{\sum_{j \in j_z} G_j(y) h_j(z)}$$
$$D_z^{\text{sec}}(y) = \int_y^{h/2} \int_{y-b/2}^{b/2} E(y, z) y dy dz, \ D_y^{\text{sec}}(z) = \int_z^{h/2} \int_{-h/2}^{h/2} E(y, z) z dy dz.$$

Здесь, по сравнению с формулами, приведенными в [6] для плоской задачи, введены вторые множители, содержащие модули сдвига и отражающие зависимость от второй координаты в сечении. При вычислении напряжения $\tau_{yx}^{(k)}$ суммирование в формуле выполняется по фазам, пересекаемым горизонтальным уровнем *y* с номерами $j \in j_y$. Аналогично в формуле для $\tau_{zx}^{(k)}$ это осуществляется для фаз, пересекаемых уровнем *z* с номерами $j \in j_z$.

3. Кручение стержня. Перемещения при кручении получим как результат жесткого поворота сечения и его депланации [20]:

$$u(x, y, z) = \kappa_x \psi(y, z), \quad \kappa_x(x) = \frac{d\theta_x}{dx},$$
(15)

$$v(x,z) = -\Theta_x z, \qquad w(x,y) = \Theta_x y.$$

Здесь θ_x — угол поворота сечения относительно оси *x*; κ_x — кручение оси стержня; ψ — функция депланации Сен-Венана. При учете (15) компоненты сдвиговой деформации и касательные напряжения принимают вид

Вестник ТГАСУ. 2023. Т. 25. № 6

$$\begin{split} \gamma_{xy}(x, y, z) &= \kappa_x \left(\frac{\partial \Psi}{\partial y} - z \right), \ \gamma_{xz}(x, y, z) = \kappa_x \left(\frac{\partial \Psi}{\partial z} + y \right), \quad \gamma_{yz} = 0 \,, \\ \tau_{xy}^{(k)} &= G_k \kappa_x \left(\frac{\partial \Psi}{\partial y} - z \right), \ \tau_{xz}^{(k)} = G_k \kappa_x \left(\frac{\partial \Psi}{\partial z} + y \right). \end{split}$$

Далее напряжения при кручении будем определять с помощью функции напряжений Прандтля ф [20]. Взяв за основу выражения напряжений в однородном стержне

$$\tau_{xy} = \frac{\partial \phi}{\partial z}, \ \tau_{xz} = -\frac{\partial \phi}{\partial y},$$

представим их для неоднородного стержня в виде

$$\tau_{xy}^{(k)} = G_k \kappa_x \frac{\partial \overline{\varphi}}{\partial z}, \ \tau_{xz}^{(k)} = -G_k \kappa_x \frac{\partial \overline{\varphi}}{\partial y}.$$
 (16)

Здесь $\overline{\phi}$ – единая для всех фаз сечения аппроксимация функции деформаций при кручении. Примем для нее, согласно мембранной аналогии, функцию прогибов гибкой мембраны *w*, закрепленной на контуре сечения ($w \rightarrow \overline{\phi}$). Аппроксимируем прогибы мембраны выражением

$$\overline{\varphi} = bh[\operatorname{ch}(\alpha_{0z}) - \operatorname{ch}(\alpha_{0z}\xi_z)][\operatorname{ch}(\alpha_{0y}) - \operatorname{ch}(\alpha_{0y}\xi_y)], \qquad (17)$$

$$\xi_y = 2y/h, \ \xi_z = 2z/b,$$

удовлетворяющим требуемому условию $\bar{\varphi} = 0$ на границе $\xi_y = \xi_z = \pm 1$. Заданные масштабные параметры α_{0z} , α_{0y} определяют интервалы гиперболических функций в (17), используемые для аппроксимации на прямоугольной области сечения. В отличие от тригонометрической аппроксимации, форма (17) дает физически правильный знак вторых производных напряжений $\partial^2 \tau_{xz} / \partial z^2$, $\partial^2 \tau_{xy} / \partial y^2$.

Подставив напряжения (16), записанные с учетом функции (17), в условие равновесия для крутящего момента

$$M_t(x) = \sum_{k=1}^{s} \iint_{A_k} \left(\tau_{xz}^{(k)} y - \tau_{xy}^{(k)} z \right) dA,$$

получим формулы для касательных напряжений при кручении

$$\tau_{xz}^{(k)} = \frac{2G_k M_t}{D_t} b\alpha_{0y} \operatorname{sh}(\alpha_{0y} \xi_y) [\operatorname{ch}(\alpha_{0z}) - \operatorname{ch}(\alpha_{0z} \xi_z)],$$

$$\tau_{xy}^{(k)} = -\frac{2G_k M_t}{D_t} h\alpha_{0z} \operatorname{sh}(\alpha_{0z} \xi_z) [\operatorname{ch}(\alpha_{0y}) - \operatorname{ch}(\alpha_{0y} \xi_y)]$$

и жесткость неоднородного сечения при кручении

Ì

$$D_{t} = 2\sum_{k=1}^{3} G_{k} \iint_{A_{k}} \left\{ b\alpha_{0y} \operatorname{sh}(\alpha_{0y}\xi_{y}) [\operatorname{ch}(\alpha_{0z}) - \operatorname{ch}(\alpha_{0z}\xi_{z})]y - h\alpha_{0z} \operatorname{sh}(\alpha_{0z}\xi_{z}) [\operatorname{ch}(\alpha_{0y}) - \operatorname{ch}(\alpha_{0y}\xi_{y})]z \right\} dA,$$
(18)

входящей в физическое обобщенное равенство при кручении

$$D_t \kappa_x = M_x \,. \tag{19}$$

4. Формулировка краевой задачи. Как известно, физическая структура стержня не оказывает влияния на вид формируемых для него условий равновесия и кинематических соотношений. Представим систему дифференциальных уравнений в перемещениях для рассмотренных видов деформирования при учете жесткостных характеристик (6), (14), (18), физических соотношений (13), (19) и записанных с учетом симметрии (4):

$$\frac{d}{dx}\left(D_0\frac{du}{dx}\right) = q_x - \frac{dN_t}{dx},$$
$$\frac{d^2}{dx^2}\left[D_{zz}\left(\frac{d^2v}{dx^2} - \frac{d\gamma_{y0}}{dx}\right)\right] = q_y - \frac{d^2M_{yt}}{dx^2},$$
$$\frac{d^2}{dx^2}\left[D_{yy}\left(\frac{d^2w}{dx^2} - \frac{d\gamma_{z0}}{dx}\right)\right] = q_z - \frac{d^2M_{zt}}{dx^2},$$
$$\frac{d}{dx}\left(D_x\frac{d\theta_x}{dx}\right) = m_x.$$

Система дополняется двенадцатью кинематическими и статическими условиями, соответствующими способу закрепления концов стержня. Последние записываются с использованием физических зависимостей (4), (13), (19).

Выводы

Таким образом, полученные соотношения позволяют выполнять приближенные постановки и решения разнообразных краевых прямых и обратных задач, в числе которых: выявление напряженно-деформированного состояния композитного стержня при термосиловом воздействии, оценка его прочности и жесткости, выявление рациональных геометрических и структурных параметров неоднородной структуры стержня, оптимизационные задачи.

Список источников

- 1. Мищенко А.В. Расчетная модель нелинейного динамического деформирования составных многофазных стержней // Вестник МГСУ. 2014. № 5. С. 35–44. DOI: 10.22227/1997-0935.2014.5
- 2. *Андреев А.Н., Немировский Ю.В.* Многослойные анизотропные оболочки и пластины: изгиб, устойчивость, колебания. Новосибирск : Наука, 2001. 288 с. EDN: RTXGKT
- Chen W., Hao J., Tang M. Analytical analysis of dynamic stress distribution of fiber reinforced polymer rod based on realistic boundary shear stress // Composites Part B: Engineering. 2017. V. 131. P. 209–220. URL: https://doi.org/10.1016/j.compositesb.2017.07.043
- Li C., Yin X., Wang Y., Zhang L., Zhang Z., Liu Y., Xian G. Mechanical property evolution and service life prediction of pultruded carbon/glass hybrid rod exposed in harsh oil-well condition // Composite Structures. 2020. V. 246. Art. 112418. URL: https://doi.org/10.1016/ j.compstruct.2020.112418
- 5. *Мищенко А.В.* Моделирование двумерных температурных полей в структурно-неоднородных стержнях с разрывными геометрическими параметрами // Известия вузов. Строительство. 2018. № 1. С. 5–15. DOI 10.32683/0556-1052-2018-709-1-5-15

- 6. *Мищенко А.В.* Напряжения в слоистых стержнях переменного сечения // Механика композиционных материалов и конструкций. 2007. Т. 13. № 4. С. 537–547. URL: https://mkmk.ras.ru/volume/2007/%e2%84%964-2007/
- Bedon C., Louter C. Numerical investigation on structural glass beams with GFRP-embedded rods, including effects of pre-stress // Composite Structures. 2018. V. 184. P. 650–661. URL: https://doi.org/10.1016/j.compstruct.2017.10.027
- O'Neill C., McPolin D., Taylor S.E., Martin T., Harte A.M. Glued-in basalt FRP rods under combined axial force and bending moment: An experimental study // Composite Structures. 2018. V. 186. P. 267–273. URL: https:// doi.org/10.1016/j.compstruct.2017.12.029
- 9. Деревянных Е.А., Миронов Б.Г. К вопросу о кручении неоднородных призматических стержней // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния. 2014. № 3 (21). С. 105–111. URL: http://limit21.ru/upload/arhiv/21.pdf
- Winczek J. A simplified method of predicting stresses in surfaced steel rods // Journal of Materials Processing Technology. 2012. V. 212. I. 5. 2012. P. 1080–1088. URL: https://doi.org/ 10.1016/j.jmatprotec.2011.12.016
- Turusov R.A. Elastic and thermal behavior of a layered structure. Part II. Calculation results and their analysis // Mech. Compos Mater. 2015. V. 51. P. 127–134. URL: https://doi.org/ 10.1007/s11029-015-9484-9
- Andreev V.I., Turusov R.A. Thermal strength of adhesion bond // Applied Mechanics and Materials. 2014. V. 670-671. P. 153–157. URL: https://doi.org/10.4028/www.scientific.net/ AMM.670-671.153
- 13. Горбачев В.И. Инженерная теория сопротивления неоднородных стержней из композиционных материалов // Вестник МГТУ им. Н.Э. Баумана. Серия : Естественные науки. 2016. № 6. С. 56–72. DOI: 10.18698/1812-3368-2016-6-56-72
- Горынин Г.Л., Немировский Ю.В. Продольно-поперечный изгиб слоистых балок в трехмерной постановке // ПМТФ. 2004. Т. 45. № 6. С. 133–143. URL: https://www.sibran.ru/ journals/issue.php?ID=120017
- 15. *Yankovskii A.P.* Refinement of the asymptotic expansions when solving the spatial problem of the bending and twisting of composite bars // Journal of Applied Mathematics and Mechanics. 2015. V. 79. № 5. P. 475–492. URL: https://doi.org/10.1016/j.jappmathmech.2016.03.009
- Azinović B., Danielsson H., Serrano E., Kramar M. Glued-in rods in cross laminated timber Numerical simulations and parametric studies // Construction and Building Materials. 2019. V. 212. P. 431–441. URL: https://doi.org/10.1016/j.conbuildmat.2019.03.331
- 17. Jawdhari A, Harik I. Finite element analysis of RC beams strengthened in flexure with CFRP rod panels // Construction and Building Materials. 2018. V. 163. P. 751–766. URL: https://doi.org/10.1016/j.conbuildmat.2017.12.139
- Grunwald C., Kaufmann M., Alter B., Vallée T., Tannert T. Numerical investigations and capacity prediction of G-FRP rods glued into timber // Composite Structures. 2018. V. 202. P. 47–59. URL: https:// doi.org/10.1016/j.compstruct.2017.10.010
- Wu Q, Xiao S., Iwashita K. Experimental study on the interfacial shear stress of RC beams strengthened with prestressed BFRP rod // Results in Physics. 2018. V. 10. P. 427–433. URL: https:// doi.org/10.1016/j.rinp.2018.06.007
- Timoshenko S.P., Goodier J.N. Theory of Elasticity. 3 edition. New York : McGraw-Hill College, 1970. 608 p. ISBN-13: 978-0070647206, ISBN-10: 0070647208.

REFERENCES

- 1. *Mishchenko A.V.* Calculation model of nonlinear dynamic deformation of composite multiphase rods. *Vestnik MGSU*. 2014; (5): 35–44. DOI: 10.22227/1997-0935.2014.5 (In Russian)
- 2. Andreev A.N., Nemirovsky Yu.V. Multilayer anisotropic shells and plates: Bending, stability, vibrations. Novosibirsk: Nauka, 2001. 288 p. EDN: RTXGKT (In Russian)
- Chen W., Hao J., Tang M. Analytical analysis of dynamic stress distribution of fiber reinforced polymer rod based on realistic boundary shear stress. *Composites Part B: Engineering*. 2017; 131: 209–220. https://doi.org/10.1016/j.compositesb.07.07.043.2017

- Li C., Yin X., Wang Y., Zhang L., Zhang Z., Liu Y., Xian G. Mechanical property evolution and service life prediction of pultruded carbon/glass hybrid rod exposed in harsh oil-well condition. Composite Structures. 2020; 246: 112418. https://doi.org/10.1016/j.compstruct
- Mishchenko A.V. Modeling of two-dimensional temperature fields in rods with structural inhomogeneity and discontinuous geometrical parameters. *Izvestiya vuzov. Stroitel'stvo.* 2018; (1): 5–15. DOI 10.32683/0556-1052-2018-709-1-5-15 (In Russian)
- Mishchenko A.V. Stresses in layered rods with variable cross section. Mekhanika kompozitsionnykh materialov i konstruktsii. 2007; 13(4): 537-547. (In Russian)
- Bedon C., Louter C. Numerical investigation on structural glass beams with GFRP-embedded rods, including effects of pre-stress. *Composite Structures*. 2018; 184: 650–661. https://doi.org/ 10.1016/j.compstruct.2017.10.10.027
- O'Neill C., McPolin D., Taylor S.E., Martin T., Harte A.M. Glued-in basalt FRP rods under combined axial force and bending moment: An experimental study. Composite Structures. 2018; 186: 267–273. https://doi.org/10.1016/j.compstruct.2017.12.12.029
- 9. Derevyannykh E.A., Mironov B.G. Torsion of heterogeneous prismatic rods. Vestnik Chuvashskogo gosudarstvennogo pedagogicheskogo universiteta im. I.Ya. Yakovleva. Seriya: Mekhanika predel'nogo sostoyaniya. 2014; 3 (21): 105–111. (In Russian)
- Winczek J.A. Simplified method of predicting stresses in surfaced steel rods. Journal of Materials Processing Technology. 2012; 212 (5): 1080–1088. https://doi.org/10.1016/j.jmatprotec. 2011.12.016
- 11. *Turusov R.A.* Elastic and thermal behavior of a layered structure. Part II. Calculation results and their analysis. *Mechanics of Composite Materials*. 2015; 51: 127–134 https://doi.org/ 10.1007/s11029-015-9484-9
- Andreev V.I., Turusov R.A. Thermal strength of adhesion bond. Applied Mechanics and Materials. 2014; 670-671: 153–157 https://doi.org/10.4028/www.scientific.net/AMM.670-671.153
- Gorbachev V.I. Engineering theory of inhomogeneous rods resistance from composite materials. Vestnik MGTU im. N.E. Baumana. Seriya: Estestvennye nauki. 2016; (6): 56–72. DOI: 10.18698/1812-3368-2016-6-56-72 2016 (In Russian)
- Gorynin G.L., Nemirovsky Yu.V. Longitudinal-transverse bending of laminated beams in threedimensional setting. Prikladnaya mekhanika i tekhnicheskaya fizika. 2004; 45 (6): 133–143. (In Russian)
- 15. Yankovskii A.P. Refinement of the asymptotic expansions, solving the spatial problem of the bending and twisting of composite bars. Journal of Applied Mathematics and Mechanics. 2015; 79 (5): 475–492 https://doi.org/10.1016/j.jappmathmech.2016.03.03.009
- Azinović B., Danielsson H., Serrano E., Kramar M. Glued-in rods in cross laminated timber -Numerical simulations and parametric studies. Construction and Building Materials. 2019; 212: 431–441. https://doi.org/10.1016/j.conbuildmat.2019.03.3.331
- Jawdhari A., Harik I. Finite element analysis of RC beams strengthened in flexure with CFRP rod panels. Construction and Building Materials. 2018; 163: 751–766 https://doi.org/10.1016/ j.conbuildmat.2017.12.139
- Grunwald C., Kaufmann M., Alter B., Vallée T., Tannert T. Numerical investigations and capacity prediction of G-FRP rods glued into timber. Composite Structures. 2018; 202: 47–59 https://doi.org/10.1016/j.compstruct.2017.10.10.010
- Wu Q., Xiao S., Iwashita K. Experimental study on the interfacial shear stress of RC beams strengthened with pre-stressed BFRP rod. *Results in Physics*. 2018; 10: 427–433 https://doi.org/ 10.1016/j.rinp.2018.06.007
- Timoshenko S.P., Goodier J.N. Theory of Elasticity. 3rd ed. New York: McGraw-Hill College, 1970. 608 p. ISBN-13: 978-0070647206, ISBN-10: 0070647208.

Сведения об авторе

Мищенко Андрей Викторович, докт. техн. наук, доцент, Новосибирский государственный архитектурно-строительный университет (Сибстрин), 630008, Новосибирск, ул. Ленинградская, 113; Новосибирское высшее военное командное ордена Жукова училище, 630117, Новосибирск, ул. Иванова, 49, mavr59@ngs.ru

Author details

Andrey V. Mishchenko, DSc, A/Professor, Novosibirsk State University of Architecture and Civil Engineering, 113, Leningradskaya Str., 630008, Novosibirsk, Russia; Order of Zhukov Novosibirsk Higher Military Command School, 49, Ivanov Str., 630117, Novosibirsk, Russia, mavr59@ngs.ru

Статья поступила в редакцию 21.09.2023 Одобрена после рецензирования 03.10.2023 Принята к публикации 21.11.2023 Submitted for publication 21.09.2023 Approved after review 03.10.2023 Accepted for publication 21.11.2023